Skip to main content

On Approximative Reachability Analysis of Biochemical Dynamical Systems

  • Conference paper
  • 1077 Accesses

Part of the Lecture Notes in Computer Science book series (TCSB,volume 7625)

Abstract

This is an extended version of the workshop paper [1], in which a new computational technique called quantitative discrete approximation has been introduced. The technique provides finite discrete approximation of continuous dynamical systems which is suitable especially for a significant class of biochemical dynamical systems. With decreasing granularity the approximation of behaviour between a discrete state and its successor converges to the behaviour of the original continuous system in the respective part of the phase space.

This paper provides a detailed description of the method and algorithms solving the reachability problem in biochemical dynamical systems. The method is supplemented with heuristics for reducing the cardinality of the reachable state space. The algorithms are evaluated on six models (with numbers of variables ranging from 2 to 12).

Keywords

  • Model Check
  • Reachable State
  • Biochemical System
  • Reachability Analysis
  • Ammonium Transport

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-35524-0_4
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-35524-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brim, L., Fabriková, J., Drazan, S., Safránek, D.: Reachability in biochemical dynamical systems by quantitative discrete approximation (extended abstract). In: Comp. Mod., pp. 97–112 (2011)

    Google Scholar 

  2. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11), 1239–1249 (2007)

    CrossRef  Google Scholar 

  3. Priami, C.: Algorithmic systems biology. Commun. ACM 52(5), 80–88 (2009)

    CrossRef  Google Scholar 

  4. Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors i. the deficiency zero and the deficiency one theorems. Chemical Engineering Science 42, 2229–2268 (1987)

    CrossRef  Google Scholar 

  5. Oster, G.F., Perelson, A.S.: Chemical reaction dynamics. Archive for Rational Mechanics and Analysis 55, 230–274 (1974), doi:10.1007/BF00281751

    CrossRef  MathSciNet  Google Scholar 

  6. Krambeck, F.J.: The mathematical structure of chemical kinetics in homogeneous single-phase systems. Archive for Rational Mechanics and Analysis 38, 317–347 (1970), doi:10.1007/BF00251527

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Tyson, J., et al.: Chemical kinetic theory: understanding cell-cycle regulation. Trends in Biochemical Sciences 21, 89–96 (1996)

    Google Scholar 

  8. Batt, G., et al.: Temporal logic analysis of gene networks under parameter uncertainty. IEEE Transactions of Automatic Control 53, 215–229 (2008)

    CrossRef  MathSciNet  Google Scholar 

  9. Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. Transactions of the Institute of Measurement and Control 32, 445–467 (2010)

    CrossRef  Google Scholar 

  10. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8, 244–263 (1986)

    CrossRef  MATH  Google Scholar 

  11. Monteiro, P.T., et al.: Temporal logic patterns for querying qualitative models of genetic regulatory networks. In: ECAI. Frontiers in Artificial Intelligence and Applications, vol. 178, pp. 229–233. IOS Press (2008)

    Google Scholar 

  12. Belta, C., Habets, L.: Controlling a class of nonlinear systems on rectangles. IEEE Transactions on Automatic Control 51(11), 1749–1759 (2006)

    CrossRef  MathSciNet  Google Scholar 

  13. Barnat, J., et al.: Computational Analysis of Large-Scale Multi-Affine ODE Models. In: 2009 International Workshop on High Performance Computational Systems Biology (HiBi 2009), pp. 81–90. IEEE Computer Society Press (2009)

    Google Scholar 

  14. Asarin, E., et al.: Recent progress in continuous and hybrid reachability analysis. In: IEEE International Conference on Control Applications, Computer Aided Control System Design, pp. 1582–1587 (2006)

    Google Scholar 

  15. Halászm, A., et al.: Analysis of lactose metabolism in e.coli using reachability analysis of hybrid systems. IET Systems Biology 1(2), 130–148 (2007)

    CrossRef  Google Scholar 

  16. Batt, G., et al.: Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica 44, 982–989 (2008)

    CrossRef  MathSciNet  Google Scholar 

  17. Habets, L., van Schuppen, J.H.: A control problem for affine dynamical systems on a full-dimensional polytope. Automatica 40(1), 21–35 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Maler, O., Batt, G.: Approximating Continuous Systems by Timed Automata. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 77–89. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  19. Berman, S., Halász, Á.M., Kumar, V.: MARCO: A Reachability Algorithm for Multi-affine Systems with Applications to Biological Systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 76–89. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  20. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic Rectangular Refinement of Affine Hybrid Systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  21. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Inf. 43, 451–476 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Dang, T., Le Guernic, C., Maler, O.: Computing Reachable States for Nonlinear Biological Models. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 126–141. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  23. Rudin, W.: Real and complex analysis, 2nd edn. McGraw-Hill, New York (1974)

    MATH  Google Scholar 

  24. Hartman, P.: Ordinary Differential Equations, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    CrossRef  MATH  Google Scholar 

  25. Horn, F., Jackson, R.: General mass action kinetics. Archive for Rational Mechanics and Analysis 47, 81–116 (1972), doi:10.1007/BF00251225

    CrossRef  MathSciNet  Google Scholar 

  26. Brim, L., Fabrikova, J., Drazan, S., Safranek, D.: Reachability in biochemical dynamical systems by quantitative discrete approximation. Technical report (2011), arXiv:1107.5924v1, CoRR.csSY

    Google Scholar 

  27. Alexander, H.K., Wahl, L.M.: Self-tolerance and autoimmunity in a regulatory t cell model. Bulletin of Mathematical Biology 73(1), 33–71 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  28. Ma, H., Boogerd, F., Goryanin, I.: Modelling nitrogen assimilation of escherichia coli at low ammonium concentration. Journal of Biotechnology 144, 175–183 (2009)

    CrossRef  Google Scholar 

  29. Olsen, L.F., Hauser, M.J.B., Kummer, U.: Mechanism of protection of peroxidase activity by oscillatory dynamics. European Journal of Biochemistry 270(13), 2796–2804 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brim, L., Fabriková, J., Dražan, S., Šafránek, D. (2012). On Approximative Reachability Analysis of Biochemical Dynamical Systems. In: Priami, C., Petre, I., de Vink, E. (eds) Transactions on Computational Systems Biology XIV. Lecture Notes in Computer Science(), vol 7625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35524-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35524-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35523-3

  • Online ISBN: 978-3-642-35524-0

  • eBook Packages: Computer ScienceComputer Science (R0)