On Approximative Reachability Analysis of Biochemical Dynamical Systems

  • L. Brim
  • J. Fabriková
  • S. Dražan
  • D. Šafránek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7625)


This is an extended version of the workshop paper [1], in which a new computational technique called quantitative discrete approximation has been introduced. The technique provides finite discrete approximation of continuous dynamical systems which is suitable especially for a significant class of biochemical dynamical systems. With decreasing granularity the approximation of behaviour between a discrete state and its successor converges to the behaviour of the original continuous system in the respective part of the phase space.

This paper provides a detailed description of the method and algorithms solving the reachability problem in biochemical dynamical systems. The method is supplemented with heuristics for reducing the cardinality of the reachable state space. The algorithms are evaluated on six models (with numbers of variables ranging from 2 to 12).


Model Check Reachable State Biochemical System Reachability Analysis Ammonium Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brim, L., Fabriková, J., Drazan, S., Safránek, D.: Reachability in biochemical dynamical systems by quantitative discrete approximation (extended abstract). In: Comp. Mod., pp. 97–112 (2011)Google Scholar
  2. 2.
    Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11), 1239–1249 (2007)CrossRefGoogle Scholar
  3. 3.
    Priami, C.: Algorithmic systems biology. Commun. ACM 52(5), 80–88 (2009)CrossRefGoogle Scholar
  4. 4.
    Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors i. the deficiency zero and the deficiency one theorems. Chemical Engineering Science 42, 2229–2268 (1987)CrossRefGoogle Scholar
  5. 5.
    Oster, G.F., Perelson, A.S.: Chemical reaction dynamics. Archive for Rational Mechanics and Analysis 55, 230–274 (1974), doi:10.1007/BF00281751MathSciNetCrossRefGoogle Scholar
  6. 6.
    Krambeck, F.J.: The mathematical structure of chemical kinetics in homogeneous single-phase systems. Archive for Rational Mechanics and Analysis 38, 317–347 (1970), doi:10.1007/BF00251527MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Tyson, J., et al.: Chemical kinetic theory: understanding cell-cycle regulation. Trends in Biochemical Sciences 21, 89–96 (1996)Google Scholar
  8. 8.
    Batt, G., et al.: Temporal logic analysis of gene networks under parameter uncertainty. IEEE Transactions of Automatic Control 53, 215–229 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. Transactions of the Institute of Measurement and Control 32, 445–467 (2010)CrossRefGoogle Scholar
  10. 10.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8, 244–263 (1986)zbMATHCrossRefGoogle Scholar
  11. 11.
    Monteiro, P.T., et al.: Temporal logic patterns for querying qualitative models of genetic regulatory networks. In: ECAI. Frontiers in Artificial Intelligence and Applications, vol. 178, pp. 229–233. IOS Press (2008)Google Scholar
  12. 12.
    Belta, C., Habets, L.: Controlling a class of nonlinear systems on rectangles. IEEE Transactions on Automatic Control 51(11), 1749–1759 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Barnat, J., et al.: Computational Analysis of Large-Scale Multi-Affine ODE Models. In: 2009 International Workshop on High Performance Computational Systems Biology (HiBi 2009), pp. 81–90. IEEE Computer Society Press (2009)Google Scholar
  14. 14.
    Asarin, E., et al.: Recent progress in continuous and hybrid reachability analysis. In: IEEE International Conference on Control Applications, Computer Aided Control System Design, pp. 1582–1587 (2006)Google Scholar
  15. 15.
    Halászm, A., et al.: Analysis of lactose metabolism in e.coli using reachability analysis of hybrid systems. IET Systems Biology 1(2), 130–148 (2007)CrossRefGoogle Scholar
  16. 16.
    Batt, G., et al.: Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica 44, 982–989 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Habets, L., van Schuppen, J.H.: A control problem for affine dynamical systems on a full-dimensional polytope. Automatica 40(1), 21–35 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Maler, O., Batt, G.: Approximating Continuous Systems by Timed Automata. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 77–89. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Berman, S., Halász, Á.M., Kumar, V.: MARCO: A Reachability Algorithm for Multi-affine Systems with Applications to Biological Systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 76–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic Rectangular Refinement of Affine Hybrid Systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Inf. 43, 451–476 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Dang, T., Le Guernic, C., Maler, O.: Computing Reachable States for Nonlinear Biological Models. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 126–141. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Rudin, W.: Real and complex analysis, 2nd edn. McGraw-Hill, New York (1974)zbMATHGoogle Scholar
  24. 24.
    Hartman, P.: Ordinary Differential Equations, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)zbMATHCrossRefGoogle Scholar
  25. 25.
    Horn, F., Jackson, R.: General mass action kinetics. Archive for Rational Mechanics and Analysis 47, 81–116 (1972), doi:10.1007/BF00251225MathSciNetCrossRefGoogle Scholar
  26. 26.
    Brim, L., Fabrikova, J., Drazan, S., Safranek, D.: Reachability in biochemical dynamical systems by quantitative discrete approximation. Technical report (2011), arXiv:1107.5924v1, CoRR.csSYGoogle Scholar
  27. 27.
    Alexander, H.K., Wahl, L.M.: Self-tolerance and autoimmunity in a regulatory t cell model. Bulletin of Mathematical Biology 73(1), 33–71 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Ma, H., Boogerd, F., Goryanin, I.: Modelling nitrogen assimilation of escherichia coli at low ammonium concentration. Journal of Biotechnology 144, 175–183 (2009)CrossRefGoogle Scholar
  29. 29.
    Olsen, L.F., Hauser, M.J.B., Kummer, U.: Mechanism of protection of peroxidase activity by oscillatory dynamics. European Journal of Biochemistry 270(13), 2796–2804 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. Brim
    • 1
  • J. Fabriková
    • 1
  • S. Dražan
    • 1
  • D. Šafránek
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations