Multiple Verification in Complex Biological Systems: The Bone Remodelling Case Study

  • Ezio Bartocci
  • Pietro Liò
  • Emanuela Merelli
  • Nicola Paoletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7625)

Abstract

We present a set of formal techniques and a methodology for a composite formal analysis at the tissue and organ level, focusing on the verification of quantitative properties in the process of bone remodelling. Starting from a differential equation model, we derive a stochastic model and a piecewise multi-affine approximation in order to perform model checking of stabilisation properties for the biological tissue, and to assess the differences between a regular remodelling activity and a defective activity typical of pathologies like osteoporosis. The complex nonlinear dynamics of bone remodelling is analysed with a variety of techniques: sensitivity analysis for the differential equation model; quantitative probabilistic model checking for the stochastic model; and classical model checking and parameter synthesis on the piecewise multi-affine model. Such analyses allow us to extract a wealth of information that is not only useful for a deeper understanding of the biological process but also towards medical diagnoses.

Keywords

formal analysis bone remodelling model checking sensitivity piecewise multi-affine abstraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akman, O.E., Guerriero, M.L., Loewe, L., Troein, C.: Complementary approaches to understanding the plant circadian clock. In: FBTC. EPTCS, vol. 19, pp. 1–19 (2010)Google Scholar
  2. 2.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barbuti, R., Cataudella, S., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A probabilistic model for molecular systems. Fundamenta Informaticae 67(1-3), 13–27 (2005)MathSciNetMATHGoogle Scholar
  4. 4.
    Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model Repair for Probabilistic Systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Batt, G., Belta, C., Weiss, R.: Temporal logic analysis of gene networks under parameter uncertainty. IEEE Transactions on Automatic Control 53, 215–229 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of synthetic gene networks. Bioinformatics 23(18), 2415–2422 (2007)CrossRefGoogle Scholar
  7. 7.
    Belta, C., Habets, L., Kumar, V.: Control of multi-affine systems on rectangles with application to hybrid biomolecular networks. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp. 534–539. IEEE (2002)Google Scholar
  8. 8.
    Berman, S., Halász, Á.M., Kumar, V.: MARCO: A Reachability Algorithm for Multi-affine Systems with Applications to Biological Systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 76–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bortolussi, L., Policriti, A.: (Hybrid) automata and (stochastic) programs The hybrid automata lattice of a stochastic program. J. Logic Computation, 2052 – 2077 (2010)Google Scholar
  10. 10.
    Bortolussi, L., Policriti, A.: Hybrid dynamics of stochastic programs. Theoretical Computer Science 411(20), 2052–2077 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Cacciagrano, D.R., Corradini, F., Merelli, E., Tesei, L.: Multiscale Bone Remodelling with Spatial P Systems. In: Proceedings Compendium of the 4th Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC 2010), pp. 69–83 (2010)Google Scholar
  12. 12.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of Signalling Pathways Using Continuous Time Markov Chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Ciocchetta, F., Hillston, J.: Bio-pepa: A framework for the modelling and anal- ysis of biological systems. Theor. Comput. Sci. 410(33-34), 3065–3084 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Cook, B., Fisher, J., Krepska, E., Piterman, N.: Proving Stabilization of Biological Systems. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 134–149. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Dayar, T., Mikeev, L., Wolf, V.: On the numerical analysis of stochastic Lotka-Volterra models. In: Proceedings of the 2010 International Multiconference on Computer Science and Information Technology (IMCSIT), pp. 289–296. IEEE (2010) Google Scholar
  16. 16.
    Dematté, L., Priami, C., Romanel, A.: Modelling and simulation of biological processes in BlenX. SIGMETRICS Perform. Eval. Rev. 35(4), 32–39 (2008)CrossRefGoogle Scholar
  17. 17.
    Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine biocham. Journal of Biological Physics and Chemistry 4(2), 46–73 (2004)Google Scholar
  18. 18.
    Gerhard, F., Webster, D., van Lenthe, G., Müller, R.: In silico biology of bone modelling and remodelling: adaptation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367(1895), 2011 (2009)CrossRefGoogle Scholar
  19. 19.
    Geris, L., Vander Sloten, J., Van Oosterwyck, H.: In silico biology of bone modelling and remodelling: regeneration. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367(1895), 2031 (2009)CrossRefGoogle Scholar
  20. 20.
    Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  21. 21.
    Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From Cardiac Cells to Genetic Regulatory Networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: A Model Checker for Parametric Markov Models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Komarova, S., Smith, R., Dixon, S., Sims, S., Wahl, L.: Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33(2), 206–215 (2003)CrossRefGoogle Scholar
  24. 24.
    Krivine, J., Danos, V., Benecke, A.: Modelling Epigenetic Information Maintenance: A Kappa Tutorial. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 17–32. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model checking in systems biology. ACM SIGMETRICS Performance Evaluation Review 35(4), 14–21 (2008)CrossRefGoogle Scholar
  26. 26.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Li, L., Yokota, H.: Application of Petri Nets in Bone Remodeling. Gene Regulation and Systems Biology 3, 105 (2009)Google Scholar
  28. 28.
    Lin, J., Unbehauen, R.: Canonical piecewise-linear approximations. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 39, 697–699 (1992)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Liò, P., Merelli, E., Paoletti, N.: Multiple verification in computational modeling of bone pathologies. In: Proceedings of the 3rd International Workshop on Computational Models for Cell Processes (CompMod 2011), pp. 82–96 (2011) Google Scholar
  30. 30.
    Voit, E.O., Ferreira, A.E.: Computational Analysis of Biochemical Systems. Cambridge University Press (2000)Google Scholar
  31. 31.
    Paoletti, N., Liò, P., Merelli, E., Viceconti, M.: Osteoporosis: a multiscale mod- eling viewpoint. In: Proceedings of the 9th International Conference on Computational Methods in Systems Biology (CMSB 2011), pp. 183–193. ACM (2011)Google Scholar
  32. 32.
    Paoletti, N., Liò, P., Merelli, E., Viceconti, M.: Multi-level computational modeling and quantitative analysis of bone remodeling. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(5), 1366–1378 (2012)CrossRefGoogle Scholar
  33. 33.
    Parfitt, A.: Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone. Journal of Cellular Biochemistry 55(3), 273–286 (1994)CrossRefGoogle Scholar
  34. 34.
    Parfitt, M., Qiu, S., Palnitkar, S., Rao, D.: Abnormal bone remodeling in patients with spontaneous painful vertebral fracture. Journal of Bone and Mineral Research 26(3), 475–485 (2011)CrossRefGoogle Scholar
  35. 35.
    Pivonka, P., Komarova, S.: Mathematical modeling in bone biology: From intracellular signaling to tissue mechanics. Bone 47(2), 181–189 (2010)CrossRefGoogle Scholar
  36. 36.
    Pnueli, A.: The temporal logic of programs. In: 18th IEEE Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)Google Scholar
  37. 37.
    Pronk, T., de Vink, E., Bošnački, D., Breit, T.: Stochastic modeling of codon bias with PRISM. In: Proceedings of the 3rd International Workshop Methods and Tools for Coordinating Concurrent, Distributed and Mobile Systems, MTCoord 2007 (2007)Google Scholar
  38. 38.
    Soetaert, K., Petzoldt, T., et al.: Inverse modelling, sensitivity and monte carlo analysis in R using package FME. Journal of Statistical Software 33(3), 1–28 (2010)Google Scholar
  39. 39.
    Stewart, W.: Introduction to the numerical solution of Markov chains. Princeton University Press, NJ (1994)MATHGoogle Scholar
  40. 40.
    Tovar, A.: Bone remodeling as a hybrid cellular automaton optimization process. PhD thesis, University of Notre Dame (2004)Google Scholar
  41. 41.
    Viceconti, M., Bellingeri, L., Cristofolini, L., Toni, A.: A comparative study on different methods of automatic mesh generation of human femurs. Medical Engineering & Physics 20(1), 1–10 (1998)CrossRefGoogle Scholar
  42. 42.
    Whitfield, J.: Growing bone. Landes Bioscience (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ezio Bartocci
    • 1
  • Pietro Liò
    • 2
  • Emanuela Merelli
    • 3
  • Nicola Paoletti
    • 3
  1. 1.Department of Computer EngineeringVienna University of TechnologyAustria
  2. 2.Computer LaboratoryUniversity of CambridgeUK
  3. 3.School of Science and Technology, Computer Science DivisionUniversity of CamerinoItaly

Personalised recommendations