Advertisement

Quasi Product Form Approximation for Markov Models of Reaction Networks

  • Alessio Angius
  • András Horváth
  • Verena Wolf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7625)

Abstract

In cell processes, such as gene regulation or cell differentiation, stochasticity often plays a crucial role. Quantitative analysis of stochastic models of the underlying chemical reaction network can be obstructed by the size of the state space which grows exponentially with the number of considered species. In a recent paper [1] we showed that the space complexity of the analysis can be drastically decreased by assuming that the transient probabilities of the model are in product form. This assumption, however, leads to approximations that are satisfactory only for a limited range of models. In this paper we relax the product form assumption by introducing the quasi product form assumption. This leads to an algorithm whose memory complexity is still reasonably low and provides a good approximation of the transient probabilities for a wide range of models. We discuss the characteristics of this algorithm and illustrate its application on several reaction networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angius, A., Horváth, A.: Product form approximation of transient probabilities in stochastic reaction networks. Electronic Notes on Theoretical Computer Science 277, 3–14 (2011)CrossRefGoogle Scholar
  2. 2.
    Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of the developmental pathway bifurcation in phage lambda-infected escehrichia coli cells. Genetics 149(4), 1633–1648 (1998)Google Scholar
  3. 3.
    Bennett, D.C.: Differentiation in mouse melanoma cells: initial reversibility and an in-off stochastic model. Cell 34(2), 445–453 (1983)CrossRefGoogle Scholar
  4. 4.
    Boucherie, R.J., Taylor, P.: Transient product form distributions in queueing networks. Discrete Event Dynamic Systems: Theory and Applications 3, 375–396 (1993)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122(1) (2005)Google Scholar
  6. 6.
    Chandy, K.M., Herzog, U., Woo, L.S.: Parametric analysis of queueing networks. IBM Journal of R. & D. 19(1), 36–42 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ciocchetta, F., Degasperi, A., Hillston, J., Calder, M.: Some investigations concerning the CTMC and the ode model derived from bio-pepa. Electron. Notes Theor. Comput. Sci. 229, 145–163 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cook, D.L., Gerber, A.N., Tapscott, S.J.: Modeling stochastic gene expression: implications for haploinsufficiency. Proc. Natl. Acad. Sci. USA 95(26), 15641–15646 (1998)CrossRefGoogle Scholar
  9. 9.
    Cordero, F., Horváth, A., Manini, D., Napione, L., Pierro, M.D., Pavan, S., Picco, A., Veglio, A., Sereno, M., Bussolino, F., Balbo, G.: Simplification of a complex signal transduction model using invariants and flow equivalent servers. Theor. Comput. Sci. 412(43), 6036–6057 (2011)zbMATHCrossRefGoogle Scholar
  10. 10.
    Dayar, T., Mikeev, L., Wolf, V.: On the numerical analysis of stochastic Lotka-Volterra models. In: Proc. of the Workshop on Computer Aspects of Numerical Algorithms (CANA 2010), pp. 289–296 (2010)Google Scholar
  11. 11.
    Engblom, S.: Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 180, 498–515 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  13. 13.
    Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188(1), 404–425 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716–1733 (2001)CrossRefGoogle Scholar
  15. 15.
    Hasty, J., McMillen, D., Isaacs, F., Collins, J.J.: Computational studies of gene regulatory networks: in numero molecular biology. Nature Reviews Genetics 2(4), 268–279 (2001)CrossRefGoogle Scholar
  16. 16.
    Henzinger, T.A., Mikeev, L., Mateescu, M., Wolf, V.: Hybrid numerical solution of the chemical master equation. In: CMSB, pp. 55–65 (2010)Google Scholar
  17. 17.
    Jensen, A.: Markoff chains as an aid in the study of Markoff processes. Skandinavisk Aktuarietidskrift 36, 87–91 (1953)Google Scholar
  18. 18.
    Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability 1(7), 49–58 (1970)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kurtz, T.G.: The Relationship between Stochastic and Deterministic Models for Chemical Reactions. J. Chem. Phys. 57(7), 2976–2978 (1972)CrossRefGoogle Scholar
  20. 20.
    Loinger, A., Lipshtat, A., Balaban, N.Q., Biham, O.: Stochastic simulations of genetic switch systems. Phys. Rev. E 75, 021904 (2007), http://link.aps.org/doi/10.1103/PhysRevE.75.021904 CrossRefGoogle Scholar
  21. 21.
    Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast adaptive uniformisation of the chemical master equation. IET Systems Biology 4(6), 441–452 (2010)CrossRefGoogle Scholar
  22. 22.
    Moler, C., Loan, C.V.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45(1), 3–49 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. J. Chem. Phys. 119(24), 12784–12794 (2003)CrossRefGoogle Scholar
  24. 24.
    Singh, A., Hespanha, J.P.: Moment closure techniques for stochastic models in population biology. In: American Control Conference, pp. 4730–4735 (2006)Google Scholar
  25. 25.
    Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press (1995)Google Scholar
  26. 26.
    Zhang, J., Watson, L.T., Cao, Y.: Adaptive aggregation method for the chemical master equation. Int. J. of Computational Biology and Drug Design 2(2), 134–148 (2009)CrossRefGoogle Scholar
  27. 27.
    Zhang, J., Watson, L.T., Cao, Y.: A modified uniformization method for the solution of the chemical master equation. Computers & Mathematics with Applications 59(1), 573–584 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zhou, J.X., Brusch, L., Huang, S.: Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model. PLoS ONE 6(3) 6(3), 16 (2011), http://dx.plos.org/10.1371/journal.pone.0014752 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alessio Angius
    • 1
  • András Horváth
    • 1
  • Verena Wolf
    • 2
  1. 1.Department of Computer ScienceUniversity of TorinoTorinoItaly
  2. 2.Department of Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations