Skip to main content

Enhancement of the Faraday and Other Magneto-Optical Effects in Magnetophotonic Crystals

  • Chapter
Magnetophotonics

Abstract

It is shown that for existent natural materials the Faraday rotation is far below the theoretical limit [Steel et al. in J. Lightwave Technol. 18:1297, 2000]. Under this condition the value of the Faraday rotation is primarily determined by the Q-factor, while the low group velocity value, multipass traveling and energy concentration in magneto-optical material play a secondary role. A comparative analysis of the efficiency of different schemes employing defect modes, Tamm surface states, the Borrmann effect and plasmon resonance is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988)

    Google Scholar 

  2. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667–669 (1998)

    Article  CAS  Google Scholar 

  3. C. Genet, T.W. Ebbesen, Nature 445, 39–46 (2007)

    Article  CAS  Google Scholar 

  4. T. Goto, A.V. Dorofeenko, A.M. Merzlikin, A.V. Baryshev, A.P. Vinogradov, M. Inoue, A.A. Lisyansky, A.B. Granovsky, Phys. Rev. Lett. 101, 113902 (2008)

    Article  CAS  Google Scholar 

  5. A.P. Vinogradov, A.V. Dorofeenko, S.G. Erokhin, M. Inoue, A.A. Lisyansky, A.M. Merzlikin, A.B. Granovsky, Phys. Rev. B 74, 045128 (2006)

    Article  Google Scholar 

  6. A.P. Vinogradov, S.G. Erokhin, A. Granovsky, M. Inoue, J. Commun. Technol. Electron. 49, 88 (2004)

    Google Scholar 

  7. D.J. Bergman, Y.M. Strelniker, Phys. Rev. Lett. 80, 857–860 (1998)

    Article  CAS  Google Scholar 

  8. Y. Fleger, M. Rosenbluh, Y.M. Strelniker, D.J. Bergman, A.N. Lagarkov, Eur. Phys. J. B 81, 85–93 (2011)

    Article  CAS  Google Scholar 

  9. Y.M. Strelniker, Phys. Rev. B 76, 085409 (2007)

    Article  Google Scholar 

  10. Y.M. Strelniker, D.J. Bergman, Phys. Rev. B 59, R12763–R12766 (1999)

    Article  CAS  Google Scholar 

  11. Y.M. Strelniker, D.J. Bergman, Phys. Rev. B 77, 205113 (2008)

    Article  Google Scholar 

  12. Y.M. Strelniker, D. Stroud, A.O. Voznesenskaya, Eur. Phys. J. B 52, 1–7 (2006)

    Article  CAS  Google Scholar 

  13. N. Ou, J.H. Shyu, J.C. Wu, T.H. Wu, IEEE Trans. Magn. 45, 4027–4029 (2009)

    Article  CAS  Google Scholar 

  14. S. Erokhin, L. Deych, A. Lisyansky, A. Granovsky, Tech. Phys. Lett. 35, 785–788 (2009)

    Article  CAS  Google Scholar 

  15. A. Merzlikin, A. Vinogradov, M. Inoue, A. Granovsky, Phys. Solid State 50, 873–877 (2008)

    Article  CAS  Google Scholar 

  16. A.M. Merzlikin, A.P. Vinogradov, A.V. Dorofeenko, M. Inoue, M. Levy, A.B. Granovsky, Physica B, Condens. Matter 394, 277–280 (2007)

    Article  CAS  Google Scholar 

  17. A.M. Merzlikin, A.P. Vinogradov, M. Inoue, A.B. Khanikaev, A.B. Granovsky, J. Magn. Magn. Mater. 300, 108–111 (2006)

    Article  CAS  Google Scholar 

  18. V. Belotelov, D. Bykov, L. Doskolovich, A. Kalish, A. Zvezdin, Phys. Solid State 51, 1656–1662 (2009)

    Article  CAS  Google Scholar 

  19. V.I. Belotelov, L.L. Doskolovich, V.A. Kotov, E.A. Bezus, D.A. Bykov, A.K. Zvezdin, Opt. Commun. 278, 104–109 (2007)

    Article  CAS  Google Scholar 

  20. A.B. Khanikaev, A.V. Baryshev, A.A. Fedyanin, A.B. Granovsky, M. Inoue, Opt. Express 15, 6612–6622 (2007)

    Article  Google Scholar 

  21. V.G. Kravets, A.S. Lapchuk, Appl. Opt. 49, 5013–5019 (2010)

    Article  CAS  Google Scholar 

  22. A. García-Martín, G. Armelles, S. Pereira, Phys. Rev. B 71, 205116 (2005)

    Article  Google Scholar 

  23. B. Sepúlveda, L.M. Lechuga, G. Armelles, J. Lightwave Technol. 24, 945 (2006)

    Article  Google Scholar 

  24. L.E. Helseth, Phys. Rev. B 72, 033409 (2005)

    Article  Google Scholar 

  25. A. Battula, S. Chen, Y. Lu, R.J. Knize, K. Reinhardt, Opt. Lett. 32, 2692–2694 (2007)

    Article  Google Scholar 

  26. G.A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L.L. Guyader, A. Kirilyuk, R. Th, I.I. Smolyaninov, A.V. Zayats, New J. Phys. 10, 105012 (2008)

    Article  Google Scholar 

  27. G. Armelles, J.B. González-Díaz, A. García-Martín, J.M. García-Martín, A. Cebollada, M.U. González, S. Acimovic, J. Cesario, R. Quidant, G. Badenes, Opt. Express 16, 16104–16112 (2008)

    Article  CAS  Google Scholar 

  28. J. Han, A. Lakhtakia, Z. Tian, X. Lu, W. Zhang, Opt. Lett. 34, 1465–1467 (2009)

    Article  Google Scholar 

  29. R. Zhou, H. Li, B. Zhou, L. Wu, X. Liu, Y. Gao, Solid State Commun. 149, 657–661 (2009)

    Article  CAS  Google Scholar 

  30. J.H. Kang, Q.H. Park, D.S. Kim, J. Korean Phys. Soc. 55, 1295 (2009)

    Article  CAS  Google Scholar 

  31. B. Hu, B.-Y. Gu, Y. Zhang, M. Liu, Appl. Phys. Lett. 95, 121103 (2009)

    Article  Google Scholar 

  32. C. Clavero, K. Yang, J.R. Skuza, R.A. Lukaszew, Opt. Express 18, 7743–7752 (2010)

    Article  CAS  Google Scholar 

  33. D.M. Newman, M.L. Wears, R.J. Matelon, Europhys. Lett. 68, 692 (2004)

    Article  CAS  Google Scholar 

  34. M. Kohmoto, B. Sutherland, K. Iguchi, Phys. Rev. Lett. 58, 2436–2438 (1987)

    Article  Google Scholar 

  35. M. Inoue, T. Fujii, J. Appl. Phys. 81, 5659–5661 (1997)

    Article  CAS  Google Scholar 

  36. M.J. Steel, M. Levy, R.M. Osgood, J. Lightwave Technol. 18, 1297 (2000)

    Article  Google Scholar 

  37. S. Sakaguchi, N. Sugimoto, J. Lightwave Technol. 17, 1087–1092 (1999)

    Article  Google Scholar 

  38. H. Shimizu, M. Miyamura, M. Tanaka, Appl. Phys. Lett. 78, 1523–1525 (2001)

    Article  CAS  Google Scholar 

  39. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, M. Inoue, J. Appl. Phys. 93, 3906–3911 (2003)

    Article  CAS  Google Scholar 

  40. M. Inoue, K. Arai, T. Fujii, M. Abe, J. Appl. Phys. 85, 5768–5770 (1999)

    Article  CAS  Google Scholar 

  41. A.K. Zvezdin, V.A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, Bristol, 1997)

    Book  Google Scholar 

  42. S. Visnovsky, V. Prosser, R. Krishnan, J. Appl. Phys. 49, 403–408 (1978)

    Article  CAS  Google Scholar 

  43. G.S. Krinchik, O.B. Esikova, A.A. Kostyurin, Opt. Spectrosc. 44, 471–472 (1978)

    Google Scholar 

  44. M. Inoue, K. Arai, T. Fujii, M. Abe, J. Appl. Phys. 83, 6768–6770 (1998)

    Article  CAS  Google Scholar 

  45. E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, K. Arai, J. Appl. Phys. 87, 6782–6784 (2000)

    Article  CAS  Google Scholar 

  46. A.K. Zvezdin, V.I. Belotelov, Eur. Phys. J. B 37, 479–487 (2004)

    Article  CAS  Google Scholar 

  47. V.I. Belotelov, L.L. Doskolovich, A.K. Zvezdin, Phys. Rev. Lett. 98, 077401 (2007)

    Article  CAS  Google Scholar 

  48. S.D. Smith, in Light and Matter, Ia, Encyclopedia of Physics, ed. by L. Genzel (Springer, Berlin, 1967)

    Google Scholar 

  49. P.N. Argyres, Phys. Rev. 97, 334–345 (1955)

    Article  Google Scholar 

  50. R. Stevenson, Can. J. Phys. 38, 941–944 (1960)

    Article  Google Scholar 

  51. J.G. Mavroides, in Properties of Solids, ed. by F. Abeles (North-Holland, Amsterdam, 1972)

    Google Scholar 

  52. F. Abeles, in Properties of Solids, ed. by F. Abeles (North-Holland, Amsterdam, 1972)

    Google Scholar 

  53. W.J. Tabor, F.S. Chen, J. Appl. Phys. 40, 2760–2765 (1969)

    Article  CAS  Google Scholar 

  54. N. Saleh, S. Zukotynski, Phys. Status Solidi (b) 37, 879–888 (1970)

    Article  CAS  Google Scholar 

  55. S. Zukotynski, N. Saleh, Phys. Status Solidi (b) 36, 593–599 (1969)

    Article  CAS  Google Scholar 

  56. A.V. Sokolov, Optical Properties of Metals (Elsevier, New York, 1967)

    Google Scholar 

  57. Y.M. Strelniker, D.J. Bergman, A.P. Vinogradov, Physica B (2013, accepted for publication)

    Google Scholar 

  58. A.V. Dorofeenko, A.P. Vinogradov, A.M. Merzlikin, A.B. Granovsky, A.A. Lisyansky, Y.E. Lozovik, in Proceedings of NMMM–21, Moscow, June 28–July 4 (2009), pp. 206–208

    Google Scholar 

  59. S. Erokhin, A. Lisyansky, A. Merzlikin, A. Vinogradov, A. Granovsky, Phys. Solid State 52, 65–69 (2010)

    Article  CAS  Google Scholar 

  60. S.G. Erokhin, A.A. Lisyansky, A.M. Merzlikin, A.P. Vinogradov, A.B. Granovsky, Phys. Rev. B 77, 233102 (2008)

    Article  Google Scholar 

  61. T. Goto, A.V. Baryshev, M. Inoue, A.V. Dorofeenko, A.M. Merzlikin, A.P. Vinogradov, A.A. Lisyansky, A.B. Granovsky, Phys. Rev. B 79, 125103 (2009)

    Article  Google Scholar 

  62. J. Stöhr, H.C. Siegmann, Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, Berlin, 2006)

    Google Scholar 

  63. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, in Electrodynamics of Continuous Media, (Butterworth-Heinemann, Oxford, 1995)

    Google Scholar 

  64. A.P. Vinogradov, Y.E. Lozovik, A.M. Merzlikin, A.V. Dorofeenko, I. Vitebskiy, A. Figotin, A.B. Granovsky, A.A. Lisyansky, Phys. Rev. B 80, 235106 (2009)

    Article  Google Scholar 

  65. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P.B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, A. Granovsky, J. Phys. D, Appl. Phys. 39, R151 (2006)

    Article  CAS  Google Scholar 

  66. A. Figotin, V. Gorentsveig, Phys. Rev. B 58, 180–188 (1998)

    Article  CAS  Google Scholar 

  67. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008)

    Google Scholar 

  68. V.I. Safarov, V.A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, C. Marlière, Phys. Rev. Lett. 73, 3584–3587 (1994)

    Article  CAS  Google Scholar 

  69. N. Richard, A. Dereux, E. Bourillot, T. David, J.P. Goudonnet, F. Scheurer, E. Beaurepaire, J. Appl. Phys. 88, 2541–2547 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Vinogradov .

Editor information

Editors and Affiliations

Appendices

Appendix A: Relationship Between the Transmission Coefficient and the Faraday Rotation Angle

We assume that the distance between a given resonance and other ones is much larger than the resonance width. In principle, if the resonance has a large Q-factor, a small magnetization is sufficient for obtaining the required value of splitting of resonances. But, irrespective of the Q-factor, one obtains the same dependence of the transmission coefficient |T|2 on the Faraday rotation angle ϑ (Fig. 1.11). This is due to the fact that the frequency range in the vicinity of the resonance, at which the amplitude, |T|2, and the phase, argT, change significantly, is the same for both these quantities. More precisely, for \(T( k_{0} ) = \frac{\alpha}{k_{0} - \tilde{k}_{0}}\) with a real frequency, k 0, and complex values of residue, α, and the pole position, \(\tilde{k}_{0} = k_{r} - i\varGamma \), one can obtain the expression \(|T|^{2} = T_{0}^{2}\cos^{2}\vartheta \) (\(T_{0}^{2}\) is the resonant transmission), which is independent of the Q-factor. Indeed, designating a deviation of the frequency from the resonant one as δk 0=k 0k r , one has \(T( \delta k_{0} ) = \frac{\alpha}{\delta k_{0} + i\varGamma }\) and

$$ \big| T( \delta k_{0} ) \big|^{2} = \frac{|\alpha |^{2}}{\delta k_{0}^{2} + \varGamma ^{2}}. $$
(1.20)

Presuming that the presence of the magnetization shifts the peak without changing its form, one obtains ϑ=(argT(δk 0)−argT(−δk 0))/2, from which it follows that

$$ \tan \vartheta = - \frac{\delta k_{0}}{\varGamma } . $$
(1.21)

Eliminating δk 0 from expressions (1.20) and (1.21), one obtains \(|T|^{2} = \frac{|\alpha |^{2}}{\varGamma ^{2}}\cos^{2}\vartheta \). After denoting the transmission at the resonance as \(T_{0}^{2} = \frac{|\alpha |^{2}}{\varGamma ^{2}}\), the required result arises:

$$ |T|^{2} = T_{0}^{2}\cos^{2}\vartheta . $$
(1.22)
Fig. 1.11
figure 11

Universal dependence of the transmission coefficient on the Faraday rotation angle for a single pole (solid line) and the same dependence for the optical Tamm state resonance (dashed line). The deviation is caused by resonances neighboring to the Tamm state

The comparison between the one-resonance model system meeting condition (1.22) and results obtained from calculations of the Tamm state (Fig. 1.11) shows that a difference appears when the frequency moves away from the resonance, to the region in which the resonances next to the Tamm state become visible.

From this analysis one can conclude that for any lossless system with separated resonances, a large rotation angle is possible only for a small transmission, and their mutual dependence is the same for any Q-factor. A large Q-factor is needed only for obtaining the desirable value of splitting of peaks which is equal to 2δk 0.

Appendix B: Rate of the Phase Change at the Resonance Frequency

In this appendix we show that at the resonance, the absolute value of the quantity \(d\varphi /d\omega|_{\omega = \omega _{r}}\) in (1.15), is equal to the inverse width of the resonance. Near the resonance, the transfer function can be approximated as

$$T( \omega) = \frac{\alpha}{\omega - \omega _{r} - i\varGamma } , $$

where ω r and Γ are the frequency and the half-width of the resonance, respectively. By differentiating the relation T(ω)=|T(ω)|exp((ω)), one obtains

$$\frac{\partial \varphi}{\partial \omega} = \frac{i}{|T|}\frac{\partial |T|}{\partial \omega} - \frac{i}{T}\frac{\partial T}{\partial \omega} . $$

Calculating derivatives

$$\frac{\partial |T|}{\partial \omega} = \frac{\partial}{\partial k}\frac{| \alpha |}{\sqrt{( \omega - \omega _{r} )^{2} + \varGamma ^{2}}} = - |T|\frac{\omega - \omega _{r}}{( \omega - \omega _{r} )^{2} + \varGamma ^{2}} $$

and

$$\frac{\partial T}{\partial \omega} = - \frac{T}{\omega - \omega _{r} - i\varGamma } , $$

we find

$$\frac{\partial \varphi}{\partial \omega} = - \frac{\varGamma }{( \omega - \omega _{r} )^{2} + \varGamma ^{2}}. $$

It immediately follows that at the resonance

$$\frac{d\varphi ( \omega )}{d\omega} = - \frac{1}{\varGamma } . $$

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vinogradov, A.P. et al. (2013). Enhancement of the Faraday and Other Magneto-Optical Effects in Magnetophotonic Crystals. In: Inoue, M., Levy, M., Baryshev, A. (eds) Magnetophotonics. Springer Series in Materials Science, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35509-7_1

Download citation

Publish with us

Policies and ethics