Skip to main content

Deconstructing Reinforcement Learning in Sigma

  • Conference paper
Artificial General Intelligence (AGI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7716))

Included in the following conference series:

Abstract

This article describes the development of reinforcement learning within the Sigma graphical cognitive architecture. Reinforcement learning has been deconstructed in terms of the interactions among more basic mechanisms and knowledge in Sigma, making it a derived capability rather than a de novo mechanism. Basic reinforcement learning – both model-based and model-free – are demonstrated, along with the intertwining of model learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford Book, MIT Press, Cambridge (1998)

    Google Scholar 

  2. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer, Berlin (2005)

    MATH  Google Scholar 

  3. Sun, R., Slusarz, P., Terry, C.: The interaction of the explicit and the implicit in skill learning: A dual-process approach. Psychological Review 112, 159–192 (2005)

    Article  Google Scholar 

  4. Nason, S., Laird, J.E.: Soar-RL: Integrating reinforcement learning with Soar. Cognitive Systems Research 6, 51–59 (2005)

    Article  Google Scholar 

  5. Rosenbloom, P.S.: Graphical models for integrated intelligent robot architectures. In: AAAI Spring Symposium on Designing Intelligent Robots (2012)

    Google Scholar 

  6. Kschischang, F.R., Frey, B.J., Loeliger, H.: Factor Graphs and the Sum-Product Algorithm. IEEE Transactions on Information Theory 47, 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  8. Rosenbloom, P.S.: Bridging dichotomies in cognitive architectures for virtual humans. In: AAAI Fall Symposium on Advances in Cognitive Systems (2011)

    Google Scholar 

  9. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)

    Google Scholar 

  10. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems (1994)

    Google Scholar 

  11. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, Cambridge University (1989)

    Google Scholar 

  12. Rosenbloom, P.S.: Mental imagery in a graphical cognitive architecture. In: Second International Conference on Biologically Inspired Cognitive Architectures (2011)

    Google Scholar 

  13. Rosenbloom, P.S.: Extending Mental Imagery in Sigma. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 272–281. Springer, Heidelberg (2012)

    Google Scholar 

  14. Rosenbloom, P.S.: Combining Procedural and Declarative Knowledge in a Graphical Architecture. In: 10th International Conference on Cognitive Modeling (2010)

    Google Scholar 

  15. Russell, S., Binder, J., Koller, D., Kanazawa, K.: Local learning in probabilistic networks with hidden variables. In: 14th International Joint Conference on AI (1995)

    Google Scholar 

  16. Munos, R., More, A.: Variable resolution discretization in optimal control. Machine Learning 49, 291–323 (2002)

    Article  MATH  Google Scholar 

  17. Rosenbloom, P.S.: From Memory to Problem Solving: Mechanism Reuse in a Graphical Cognitive Architecture. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 143–152. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Bloch, M.K., Laird, J.E.: Heuristic value function revision. In: The 32nd Soar Workshop

    Google Scholar 

  19. Chen, J., Demski, A., Han, T., Morency, L.-P., Pynadath, P., Rafidi, N., Rosenbloom, P.S.: Fusing symbolic and decision-theoretic problem solving + perception in a graphical cognitive architecture. In: Second International Conference on Biologically Inspired Cognitive Architectures (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosenbloom, P.S. (2012). Deconstructing Reinforcement Learning in Sigma. In: Bach, J., Goertzel, B., Iklé, M. (eds) Artificial General Intelligence. AGI 2012. Lecture Notes in Computer Science(), vol 7716. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35506-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35506-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35505-9

  • Online ISBN: 978-3-642-35506-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics