Skip to main content

Depth Statistics

  • Chapter

Abstract

In 1975 John Tukey proposed a multivariate median which is the ‘deepest’ point in a given data cloud in ℝd. Later, in measuring the depth of an arbitrary point z with respect to the data, David Donoho and Miriam Gasko considered hyperplanes through z and determined its ‘depth’ by the smallest portion of data that are separated by such a hyperplane. Since then, these ideas have proved extremely fruitful. A rich statistical methodology has developed that is based on data depth and, more general, nonparametric depth statistics. General notions of data depth have been introduced as well as many special ones. These notions vary regarding their computability and robustness and their sensitivity to reflect asymmetric shapes of the data. According to their different properties they fit to particular applications. The upper level sets of a depth statistic provide a family of set-valued statistics, named depth-trimmed or central regions. They describe the distribution regarding its location, scale and shape. The most central region serves as a median. The notion of depth has been extended from data clouds, that is empirical distributions, to general probability distributions on ℝd, thus allowing for laws of large numbers and consistency results. It has also been extended from d-variate data to data in functional spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barnett, V. (1976). The ordering of multivariate data (with discussion). Journal of the Royal Statistical Society. Series A. General, 139, 318–352.

    Article  MathSciNet  Google Scholar 

  • Bazovkin, P., & Mosler, K. (2011). Stochastic linear programming with a distortion risk constraint. arXiv:1208.2113v1.

  • Bazovkin, P., & Mosler, K. (2012). An exact algorithm for weighted-mean trimmed regions in any dimension. Journal of Statistical Software, 47(13).

    Google Scholar 

  • Cascos, I. (2007). The expected convex hull trimmed regions of a sample. Computational Statistics, 22, 557–569.

    Article  MathSciNet  Google Scholar 

  • Cascos, I. (2009). Data depth: multivariate statistics and geometry. In W. Kendall & I. Molchanov (Eds.), New perspectives in stochastic geometry, Oxford: Clarendon/Oxford University Press.

    Google Scholar 

  • Cascos, I., & Molchanov, I. (2007). Multivariate risks and depth-trimmed regions. Finance and Stochastics, 11, 373–397.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Z. (1995). Bounds for the breakdown point of the simplicial median. Journal of Multivariate Analysis, 55, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Claeskens, G., Hubert, M., & Slaets, L. (2012). Multivariate functional halfspace depth. In Workshop robust methods for dependent data, Witten.

    Google Scholar 

  • Cuesta-Albertos, J., & Nieto-Reyes, A. (2008a). A random functional depth. In S. Dabo-Niang & F. Ferraty (Eds.), Functional and operatorial statistics (pp. 121–126). Heidelberg: Physica-Verlag.

    Chapter  Google Scholar 

  • Cuesta-Albertos, J., & Nieto-Reyes, A. (2008b). The random Tukey depth. Computational Statistics & Data Analysis, 52, 4979–4988.

    Article  MathSciNet  MATH  Google Scholar 

  • Cuevas, A., Febrero, M., & Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics, 22, 481–496.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., & Gasko, M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. The Annals of Statistics, 20, 1803–1827.

    Article  MathSciNet  MATH  Google Scholar 

  • Dümbgen, L. (1992). Limit theorems for the simplicial depth. Statistics & Probability Letters, 14, 119–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Dyckerhoff, R. (2002). Datentiefe: Begriff, Berechnung, Tests. Mimeo, Fakultät für Wirtschafts-und Sozialwissenschaften, Universität zu Köln.

    Google Scholar 

  • Dyckerhoff, R., Koshevoy, G., & Mosler, K. (1996). Zonoid data depth: theory and computation. In A. Pratt (Ed.), Proceedings in computational statistics COMPSTAT (pp. 235–240). Heidelberg: Physica-Verlag.

    Google Scholar 

  • Dyckerhoff, R., & Mosler, K. (2011). Weighted-mean trimming of multivariate data. Journal of Multivariate Analysis, 102, 405–421.

    Article  MathSciNet  MATH  Google Scholar 

  • Dyckerhoff, R., & Mosler, K. (2012). Weighted-mean regions of a probability distribution. Statistics & Probability Letters, 82, 318–325.

    Article  MathSciNet  MATH  Google Scholar 

  • Edelsbrunner, H. (1987). Algorithms in combinatorial geometry. Heidelberg: Springer.

    Book  MATH  Google Scholar 

  • Fraiman, R., & Muniz, G. (2001). Trimmed means for functional data. Test, 10, 419–440.

    Article  MathSciNet  MATH  Google Scholar 

  • Koshevoy, G. (2002). The Tukey depth characterizes the atomic measure. Journal of Multivariate Analysis, 83, 360–364.

    Article  MathSciNet  MATH  Google Scholar 

  • Koshevoy, G., & Mosler, K. (1997). Zonoid trimming for multivariate distributions. The Annals of Statistics, 25, 1998–2017.

    Article  MathSciNet  MATH  Google Scholar 

  • Ley, C., & Paindaveine, D. (2011). Depth-based runs tests for multivariate central symmetry. ECARES discussion papers 2011/06, ULB, Bruxelles.

    Google Scholar 

  • Liu, R. Y. (1990). On a notion of data depth based on random simplices. The Annals of Statistics, 18, 405–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, R. Y., Parelius, J. M., & Singh, K. (1999). Multivariate analysis by data depth: descriptive statistics, graphics and inference (with discussion). The Annals of Statistics, 27, 783–858.

    MathSciNet  MATH  Google Scholar 

  • Liu, R. Y., Serfling, R., & Souvaine, D. L. (2006). Data depth: robust multivariate analysis, computational geometry and applications. Providence: Am. Math. Soc.

    MATH  Google Scholar 

  • Liu, R. Y., & Singh, K. (1993). A quality index based on data depth and multivariate rank tests. Journal of the American Statistical Association, 88, 252–260.

    MathSciNet  MATH  Google Scholar 

  • Liu, X., & Zuo, Y. (2012). Computing halfspace depth and regression depth. Mimeo.

    Google Scholar 

  • Liu, X., Zuo, Y., & Wang, Z. (2011). Exactly computing bivariate projection depth contours and median. arXiv:1112.6162v1.

  • López-Pintado, S., & Romo, J. (2005). A half-graph depth for functional data. Working papers 01/2005, Universidad Carlos III, Statistics and Econometrics.

    Google Scholar 

  • López-Pintado, S., & Romo, J. (2009). On the concept of depth for functional data. Journal of the American Statistical Association, 104, 718–734.

    Article  MathSciNet  Google Scholar 

  • Lopuhaä, H. P., & Rousseeuw, P. J. (1991). Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. The Annals of Statistics, 19, 229–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Mizera, I. (2002). On depth and deep points: a calculus. The Annals of Statistics, 30, 1681–1736.

    Article  MathSciNet  MATH  Google Scholar 

  • Mizera, I., & Müller, C. H. (2004). Location-scale depth. Journal of the American Statistical Association, 99, 949–989.

    Article  MathSciNet  MATH  Google Scholar 

  • Mosler, K. (2002). Multivariate dispersion, central regions and depth: the lift zonoid approach. New York: Springer.

    Book  MATH  Google Scholar 

  • Mosler, K., Lange, T., & Bazovkin, P. (2009). Computing zonoid trimmed regions in dimension d>2. Computational Statistics & Data Analysis, 53, 2500–2510.

    Article  MathSciNet  MATH  Google Scholar 

  • Mosler, K., & Polyakova, Y. (2012). General notions of depth for functional data. arXiv:1208.1981v1.

  • Müller, C. H. (2005). Depth estimators and tests based on the likelihood principle with application to regression. Journal of Multivariate Analysis, 95, 153–181.

    Article  MathSciNet  MATH  Google Scholar 

  • Oja, H. (1983). Descriptive statistics for multivariate distributions. Statistics & Probability Letters, 1, 327–332.

    Article  MathSciNet  MATH  Google Scholar 

  • Paindaveine, D., & Šiman, M. (2012). Computing multiple-output regression quantile regions. Computational Statistics & Data Analysis, 56, 840–853.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). New York: Springer.

    Google Scholar 

  • Rousseeuw, P. J., & Hubert, M. (1999). Regression depth (with discussion). Journal of the American Statistical Association, 94, 388–433.

    Article  MathSciNet  MATH  Google Scholar 

  • Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley.

    Book  MATH  Google Scholar 

  • Serfling, R. (2006). Depth functions in nonparametric multivariate inference. In R. Liu, R. Serfling, & D. Souvaine (Eds.), Data depth: robust multivariate analysis, computational geometry and applications (pp. 1–16). Providence: Am. Math. Soc.

    Google Scholar 

  • Struyf, A., & Rousseeuw, P. J. (1999). Halfspace depth and regression depth characterize the empirical distribution. Journal of Multivariate Analysis, 69, 135–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Tukey, J. W. (1975). Mathematics and picturing data. In R. James (Ed.), Proceedings of the 1974 international congress of mathematicians, Vancouver (Vol. 2, pp. 523–531).

    Google Scholar 

  • Zuo, Y. (2000). A note on finite sample breakdown points of projection based multivariate location and scatter statistics. Metrika, 51, 259–265.

    Article  MathSciNet  MATH  Google Scholar 

  • Zuo, Y., & Serfling, R. (2000). General notions of statistical depth function. The Annals of Statistics, 28, 461–482.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Mosler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mosler, K. (2013). Depth Statistics. In: Becker, C., Fried, R., Kuhnt, S. (eds) Robustness and Complex Data Structures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35494-6_2

Download citation

Publish with us

Policies and ethics