Skip to main content

Widening Spectrum of Prions Causing Neurodegenerative Diseases

  • Chapter
  • First Online:
Proteopathic Seeds and Neurodegenerative Diseases

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

Abstract

The field of prion biology still seems to be in its infancy. Over the past three decades, there has been a steady accumulation of evidence that each neurodegenerative disease is caused by a particular protein that becomes a prion. As with the prion diseases caused by the aberrant prion protein (PrPSc), amyloid deposits in other neurodegenerative disorders were found to have the same protein as that identified by molecular genetic studies of patients with inherited neurodegeneration. While the number of prions identified in mammals (now at more than half a dozen) and in fungi (now more than ten) will undoubtedly continue to expand, we have no idea about prions in all the other phylogeny. The mammalian prions composed of PrP, Aβ, tau, α-synuclein, SOD1 and huntingtin all cause distinct neurodegenerative diseases. In each of these disorders, the respective mammalian proteins adopt a β-sheet–rich conformation that readily oligomerizes and becomes self-propagating. The oligomeric states of mammalian prions are thought to be the toxic forms, and assembly into larger polymers such as amyloid fibrils seems to be a mechanism for minimizing toxicity. To date, there is not a single medication that halts or even slows a neurodegenerative disease caused by prions. This may be a bellwether of the unique pathogenic mechanisms that feature in each of the prion diseases and of the urgent need to develop informative molecular diagnostics and effective antiprion therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alper T, Haig DA, Clarke MC (1966) The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun 22:278–284

    Article  PubMed  CAS  Google Scholar 

  • Alzheimer A (1907) Ueber eine eigenartige erkrankung der hirnrinde. Cent Nervenheilk Psychiat 30:177–179

    Google Scholar 

  • Baker HF, Ridley RM, Duchen LW, Crow TJ, Bruton CJ (1994) Induction of β(a4)-amyloid in primates by injection of Alzheimer’s disease brain homogenate. Mol Neurobiol 8:25–39

    Article  PubMed  CAS  Google Scholar 

  • Bellinger-Kawahara CG, Kempner E, Groth DF, Gabizon R, Prusiner SB (1988) Scrapie prion liposomes and rods exhibit target sizes of 55,000 Da. Virology 164:537–541

    Article  PubMed  CAS  Google Scholar 

  • Bithell A, Johnson R, Buckley NJ (2009) Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington’s disease. Biochem Soc Trans 37:1270–1275

    Article  PubMed  CAS  Google Scholar 

  • Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science 218:1309–1311

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–284

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K (2011) Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121:589–595

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Yilmazer D, de Vos RA, Jansen EN, Bohl J (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103:455–490

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536

    Article  PubMed  CAS  Google Scholar 

  • Brion J-P, Passareiro H, Nunez J, Flament-Durand J (1985) Mise en évidence immunologique de la protéine tau au niveau des lésions de dégénérescence neurofibrillaire de la maladie d’Alzheimer. Arch Biol 95:229–235

    Google Scholar 

  • Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM (2011) Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 3:89ra57

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-C, Prescott CA, Walsh D, Patterson DG, Riley BP, Kendler KS, Kuo PH (2011) Different phenotypic and genotypic presentations in alcohol dependence: age at onset matters. J Stud Alcohol Drugs 72:752–762

    PubMed  Google Scholar 

  • Chien P, Weissman JS, DePace AH (2004) Emerging principles of conformation-based prion inheritance. Annu Rev Biochem 73:617–656

    Article  PubMed  CAS  Google Scholar 

  • Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913

    Article  PubMed  CAS  Google Scholar 

  • Corsellis JA, Bruton CJ, Freeman-Browne D (1973) The aftermath of boxing. Psychol Med 3:270–303

    Article  PubMed  CAS  Google Scholar 

  • Corti O, Lesage S, Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 91:1161–1218

    Article  PubMed  CAS  Google Scholar 

  • Coskun PE, Wyrembak J, Derbereva O, Melkonian G, Doran E, Lott IT, Head E, Cotman CW, Wallace DC (2010) Systemic mitochondrial dysfunction and the etiology of Alzheimer’s disease and Down syndrome dementia. J Alzheimers Dis 20(Suppl 2):S293–S310

    PubMed  Google Scholar 

  • Croes EA, Theuns J, Houwing-Duistermaat JJ, Dermaut B, Sleegers K, Roks G, Van den Broeck M, van Harten B, van Swieten JC, Cruts M, Van Broeckhoven C, van Duijn CM (2004) Octapeptide repeat insertions in the prion protein gene and early onset dementia. J Neurol Neurosurg Psychiatry 75:1166–1170

    Article  PubMed  CAS  Google Scholar 

  • de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697

    Article  PubMed  CAS  Google Scholar 

  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  PubMed  CAS  Google Scholar 

  • Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME, Davis RW, Nislow C, Giaever G (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169:1915–1925

    Article  PubMed  CAS  Google Scholar 

  • Divry P (1927) Etude histochimique des plaques seniles. J Belge Neurol Psychiat 27:643–654

    Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  PubMed  CAS  Google Scholar 

  • Eisele YS, Bolmont T, Heikenwalder M, Langer F, Jacobson LH, Yan ZX, Roth K, Aguzzi A, Staufenbiel M, Walker LC, Jucker M (2009) Induction of cerebral β-amyloidosis: intracerebral versus systemic Aβ inoculation. Proc Natl Acad Sci USA 106:12926–12931

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203

    Article  PubMed  CAS  Google Scholar 

  • Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852

    Article  PubMed  CAS  Google Scholar 

  • Gajdusek DC (1977) Unconventional viruses and the origin and disappearance of kuru. Science 197:943–960

    Article  PubMed  CAS  Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527

    Article  PubMed  CAS  Google Scholar 

  • Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521–533

    Article  PubMed  CAS  Google Scholar 

  • Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15:5383–5398

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984a) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984b) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Eanes ED, Bladen HA, Linke RP, Termine JD (1974) Beta-pleated sheet fibrils – a comparison of native amyloid with synthetic protein fibrils. J Histochem Cytochem 22:1141–1158

    Article  PubMed  CAS  Google Scholar 

  • Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    Article  PubMed  CAS  Google Scholar 

  • Godec MS, Asher DM, Masters CL, Kozachuk WE, Friedland RP, Gibbs CJ Jr, Gajdusek DC, Rapoport SI, Schapiro MB (1991) Evidence against the transmissibility of Alzheimer’s disease. Neurology 41:1320

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA 107:3487–3492

    Article  PubMed  CAS  Google Scholar 

  • Goudsmit J, Morrow CH, Asher DM, Yanagihara RT, Masters CL, Gibbs CJ Jr, Gajdusek DC (1980) Evidence for and against the transmissibility of Alzheimer’s disease. Neurology 30:945–950

    Article  PubMed  CAS  Google Scholar 

  • Grad LI, Guest WC, Yanai A, Pokrishevsky E, O’Neill MA, Gibbs E, Semenchenko V, Yousefi M, Wishart DS, Plotkin SS, Cashman NR (2011) Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc Natl Acad Sci USA 108:16398–16403

    Article  PubMed  CAS  Google Scholar 

  • Greenfield JG, Matthews WB (1954) Post-encephalitic parkinsonism with amyotrophy. J Neurol Neurosurg Psychiatry 17:50–56

    Article  PubMed  CAS  Google Scholar 

  • Greenwald J, Buhtz C, Ritter C, Kwiatkowski W, Choe S, Maddelein ML, Ness F, Cescau S, Soragni A, Leitz D, Saupe SJ, Riek R (2010) The mechanism of prion inhibition by HET-S. Mol Cell 38:889–899

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  • Guo JL, Lee VM-Y (2011) Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286:15317–15331

    Article  PubMed  CAS  Google Scholar 

  • Hadlow WJ, Eklund CM, Kennedy RC, Jackson TA, Whitford HW, Boyle CC (1974) Course of experimental scrapie virus infection in the goat. J Infect Dis 129:559–567

    Article  PubMed  CAS  Google Scholar 

  • Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482:363–368

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  • Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowksi JQ, Lee VM-Y (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917

    Article  PubMed  CAS  Google Scholar 

  • Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:448–461

    Article  PubMed  CAS  Google Scholar 

  • Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F, Terwilliger JD, Westaway D, Ott J, Prusiner SB (1989) Linkage of a prion protein missense variant to Gerstmann-Sträussler syndrome. Nature 338:342–345

    Article  PubMed  CAS  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole GJ (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    Article  PubMed  CAS  Google Scholar 

  • Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JBJ, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW (2012) The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol. doi:10.1016/j.jmb.2011.12.060

    Google Scholar 

  • Johri A, Beal MF (2012) Antioxidants in Huntington’s disease. Biochim Biophys Acta 1822:664–674

    Article  PubMed  CAS  Google Scholar 

  • Jubelt B (2004) Post-polio syndrome. Curr Treat Options Neurol 6:87–93

    Article  PubMed  Google Scholar 

  • Kimberlin RH, Walker CA (1979) Pathogenesis of mouse scrapie: dynamics of agent replication in spleen, spinal cord and brain after infection by different routes. J Comp Pathol 89:551–562

    Article  PubMed  CAS  Google Scholar 

  • Klatzo I, Gajdusek DC, Zigas V (1959) Pathology of kuru. Lab Invest 8:799–847

    PubMed  CAS  Google Scholar 

  • Korczyn AD, Vakhapova V, Grinberg LT (2012) Vascular dementia. J Neurol Sci 322(1–2):2–10. doi:10.1016/j.jns.2012.03.027

    Article  PubMed  Google Scholar 

  • Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83:4044–4048

    Article  PubMed  CAS  Google Scholar 

  • Larsson N-G (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79:683–706

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison P, Nance M, Ross CA, Margolis RL, Squitieri F, Orobello S, Di Donato S, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Abramson RK, Marder K, Sequeiros J, Paulsen JS, Landwehrmeyer GB, Myers RH, Macdonald ME, Gusella JF (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78:690–695

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  PubMed  CAS  Google Scholar 

  • Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM, Cheung VG (2011) Widespread RNA and DNA sequence differences in the human transcriptome. Science 333:53–58

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K (2012) Trans-synaptic spread of tau pathology in vivo. PLoS One 7:e31302

    Article  PubMed  CAS  Google Scholar 

  • Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VMY (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209:975–986

    Article  PubMed  CAS  Google Scholar 

  • Macario AJL, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353:1489–1501

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Gajdusek DC, Gibbs CJ Jr (1981) Creutzfeldt-Jakob disease virus isolations from the Gerstmann-Sträussler syndrome. Brain 104:559–588

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  PubMed  CAS  Google Scholar 

  • McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, Santini VE, Lee HS, Kubilus CA, Stern RA (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68:709–735

    Article  PubMed  Google Scholar 

  • McKinley MP, Bolton DC, Prusiner SB (1983) A protease-resistant protein is a structural component of the scrapie prion. Cell 35:57–62

    Article  PubMed  CAS  Google Scholar 

  • McKinley MP, Braunfeld MB, Bellinger CG, Prusiner SB (1986) Molecular characteristics of prion rods purified from scrapie-infected hamster brains. J Infect Dis 154:110–120

    Article  PubMed  CAS  Google Scholar 

  • Mead S (2006) Prion disease genetics. Eur J Hum Genet 14:273–281

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784

    Article  PubMed  CAS  Google Scholar 

  • Morais VA, De Strooper B (2010) Mitochondria dysfunction and neurodegenerative disorders: cause or consequence. J Alzheimers Dis 20(Suppl 2):S255–S263

    PubMed  Google Scholar 

  • Morales R, Duran-Aniotz C, Castilla J, Estrada LD, Soto C (2012) De novo induction of amyloid-β deposition in vivo. Mol Psychiatry 17(12):1347–1353. doi:10.1038/mp.2011.120

    Article  PubMed  CAS  Google Scholar 

  • Mougenot AL, Nicot S, Bencsik A, Morignat E, Verchère J, Lakhdar L, Legastelois S, Baron T (2012) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33(9):2225–2228. doi:10.1016/j.neurobiolaging.2011.06.022

    Article  PubMed  CAS  Google Scholar 

  • Münch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553

    Article  PubMed  Google Scholar 

  • Olanow CW, McNaught KS (2006) Ubiquitin-proteasome system and Parkinson’s disease. Mov Disord 21:1806–1823

    Article  PubMed  Google Scholar 

  • Olanow CW, Prusiner SB (2009) Is Parkinson’s disease a prion disorder? Proc Natl Acad Sci USA 106:12571–12572

    Article  PubMed  CAS  Google Scholar 

  • Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH (2005) Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57:128–134

    Article  PubMed  Google Scholar 

  • Omalu B, Hammers JL, Bailes J, Hamilton RL, Kamboh MI, Webster G, Fitzsimmons RP (2011) Chronic traumatic encephalopathy in an Iraqi war veteran with posttraumatic stress disorder who committed suicide. Neurosurg Focus 31:E3

    Article  PubMed  Google Scholar 

  • Piro JR, Wang F, Walsh DJ, Rees JR, Ma J, Supattapone S (2011) Seeding specificity and ultrastructural characteristics of infectious recombinant prions. Biochemistry 50:7111–7116

    Article  PubMed  CAS  Google Scholar 

  • Polymenidou M, Cleveland DW (2012) Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 209:889–893

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 21:136–144

    Article  Google Scholar 

  • Prusiner SB (1984) Some speculations about prions, amyloid, and Alzheimer’s disease. N Engl J Med 310:661–663

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1989) Scrapie prions. Annu Rev Microbiol 43:345–374

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (2001) Shattuck lecture – neurodegenerative diseases and prions. N Engl J Med 344:1516–1526

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB, McKinley MP, Bowman KA, Bolton DC, Bendheim PE, Groth DF, Glenner GG (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349–358

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB, Scott M, Foster D, Pan K-M, Groth D, Mirenda C, Torchia M, Yang S-L, Serban D, Carlson GA, Hoppe PC, Westaway D, DeArmond SJ (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63:673–686

    Article  PubMed  CAS  Google Scholar 

  • Rabinovici GD, Miller BL (2010) Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs 24:375–398

    Article  PubMed  CAS  Google Scholar 

  • Rademakers R, Hutton M (2007) The genetics of frontotemporal lobar degeneration. Curr Neurol Neurosci Rep 7:434–442

    Article  PubMed  CAS  Google Scholar 

  • Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811

    Article  PubMed  Google Scholar 

  • Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225

    Article  PubMed  CAS  Google Scholar 

  • Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Holtta-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chio A, Restagno G, Borghero G, Sabatelli M, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  PubMed  CAS  Google Scholar 

  • Ridley RM, Baker HF, Windle CP, Cummings RM (2006) Very long term studies of the seeding of beta-amyloidosis in primates. J Neural Transm 113:1243–1251

    Article  PubMed  CAS  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754

    Article  PubMed  CAS  Google Scholar 

  • Rogers DR (1965) Screening for amyloid with the thioflavin-T fluorescent method. Am J Clin Pathol 44:59–61

    PubMed  CAS  Google Scholar 

  • Roos R, Gajdusek DC, Gibbs CJ Jr (1973) The clinical characteristics of transmissible Creutzfeldt-Jakob disease. Brain 96:1–20

    Article  PubMed  CAS  Google Scholar 

  • Rosen RF, Fritz JJ, Dooyema J, Cintron AF, Hamaguchi T, Lah JJ, Levine H 3rd, Jucker M, Walker LC (2012) Exogenous seeding of cerebral beta-amyloid deposition in beta APP-transgenic rats. J Neurochem 120:660–666

    Article  PubMed  CAS  Google Scholar 

  • Safar JG, Kellings K, Serban A, Groth D, Cleaver JE, Prusiner SB, Riesner D (2005) Search for a prion-specific nucleic acid. J Virol 79:10796–10806

    Article  PubMed  CAS  Google Scholar 

  • Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonso ME, Potter H, Heston LL, Martin GM (1992) Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 258:668–671

    Article  PubMed  CAS  Google Scholar 

  • Scott JR, Davies D, Fraser H (1992) Scrapie in the central nervous system: neuroanatomical spread of infection and Sinc control of pathogenesis. J Gen Virol 73(Pt 7):1637–1644

    Article  PubMed  Google Scholar 

  • Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52

    Article  PubMed  CAS  Google Scholar 

  • Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140:421–435

    Article  PubMed  CAS  Google Scholar 

  • Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437:257–261

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  • St. George-Hyslop PH (1999) Molecular genetics of Alzheimer disease. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 311–326

    Google Scholar 

  • St. George-Hyslop P, Haines J, Rogaev E, Mortilla M, Vaula G, Pericak-Vance M, Foncin J-F, Montesi M, Bruni A, Sorbi S, Rainero I, Pinessi L, Pollen D, Polinsky R, Nee L, Kennedy J, Macciardi F, Rogaeva E, Liang Y, Alexandrova N, Lukiw W, Schlumpf K, Tanzi R, Tsuda T, Farrer L, Cantu J-M, Duara R, Amaducci L, Bergamini L, Gusella J, Roses A, McLachlan DC (1992) Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nat Genet 2:330–334

    Article  PubMed  CAS  Google Scholar 

  • Stevens DJ, Walter ED, Rodriguez A, Draper D, Davies P, Brown DR, Millhauser GL (2009) Early onset prion disease from octarepeat expansion correlates with copper binding properties. PLoS Pathog 5:e1000390

    Article  PubMed  CAS  Google Scholar 

  • Stöhr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB, Giles K (2012) Purified and synthetic Alzheimer’s Aβ prions. Proc Natl Acad Sci USA 109(27):11025–11030

    Article  PubMed  Google Scholar 

  • Taraboulos A, Jendroska K, Serban D, Yang S-L, DeArmond SJ, Prusiner SB (1992) Regional mapping of prion proteins in brains. Proc Natl Acad Sci USA 89:7620–7624

    Article  PubMed  CAS  Google Scholar 

  • Tatzelt J, Groth DF, Torchia M, Prusiner SB, DeArmond SJ (1999) Kinetics of prion protein accumulation in the CNS of mice with experimental scrapie. J Neuropathol Exp Neurol 58:1244–1249

    Article  PubMed  CAS  Google Scholar 

  • Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9:418–428

    Article  PubMed  CAS  Google Scholar 

  • Udan M, Baloh RH (2011) Implications of the prion-related Q/N domains in TDP-43 and FUS. Prion 5:1–5

    Article  PubMed  CAS  Google Scholar 

  • Valentine JS, Doucette PA, Zittin Potter S (2005) Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 74:563–593

    Article  PubMed  CAS  Google Scholar 

  • van der Kamp MW, Daggett V (2009) The consequences of pathogenic mutations to the human prion protein. Protein Eng Des Sel 22:461–468

    Article  PubMed  CAS  Google Scholar 

  • Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71

    Article  PubMed  CAS  Google Scholar 

  • Watts JC, Giles K, Grillo SK, Lemus A, DeArmond SJ, Prusiner SB (2011) Bioluminescence imaging of Abeta deposition in bigenic mouse models of Alzheimer’s disease. Proc Natl Acad Sci USA 108:2528–2533

    Article  PubMed  CAS  Google Scholar 

  • Wheeler VC, Gutekunst CA, Vrbanac V, Lebel LA, Schilling G, Hersch S, Friedlander RM, Gusella JF, Vonsattel JP, Borchelt DR, MacDonald ME (2002) Early phenotypes that presage late-onset neurodegenerative disease allow testing of modifiers in Hdh CAG knock-in mice. Hum Mol Genet 11:633–640

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569

    Article  PubMed  CAS  Google Scholar 

  • Wille H, Bian W, McDonald M, Kendall A, Colby DW, Bloch L, Ollesch J, Boronvinskiy AL, Cohen FE, Prusiner SB, Stubbs G (2009) Natural and synthetic prion structure from X-ray fiber diffraction. Proc Natl Acad Sci USA 106:16990–16995

    Article  PubMed  CAS  Google Scholar 

  • Wood JG, Mirra SS, Pollock NJ, Binder II (1986) Neurofibrillary tangles of Alzheimer’s disease share antigenic determinants with the axonal microtubule-associated protein tau. Proc Natl Acad Sci USA 83:4040–4043

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  PubMed  CAS  Google Scholar 

  • Zilber N, Rannon L, Alter M, Kahana E (1983) Measles, measles vaccination, and risk of subacute sclerosing panencephalitis (SSPE). Neurology 33:1558–1564

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley B. Prusiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prusiner, S.B. (2013). Widening Spectrum of Prions Causing Neurodegenerative Diseases. In: Jucker, M., Christen, Y. (eds) Proteopathic Seeds and Neurodegenerative Diseases. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35491-5_1

Download citation

Publish with us

Policies and ethics