Advertisement

A Software Architecture for RGB-D People Tracking Based on ROS Framework for a Mobile Robot

  • Matteo MunaroEmail author
  • Filippo Basso
  • Stefano Michieletto
  • Enrico Pagello
  • Emanuele Menegatti
Part of the Studies in Computational Intelligence book series (SCI, volume 466)

Abstract

This paper describes the software architecture of a distributed multi-people tracking algorithm for mobile platforms equipped with a RGB-D sensor. Our approach features an efficient point cloud depth-based clustering, an HOG-like classification to robustly initialize a person tracking and a person classifier with online learning to drive data association. We explain in details how ROS functionalities and tools play an important role in the possibility of the software to be real time, distributed and easy to configure and debug.

Tests are presented on a challenging real-world indoor environment and tracking results have been evaluated with the CLEAR MOT metrics. Our algorithm proved to correctly track 96% of people with very limited ID switches and few false positives, with an average frame rate above 20 fps. We also test and discuss its applicability to robot-people following tasks and we report experiments on a public RGB-D dataset proving that our software can be distributed in order to increase the framerate and decrease the data exchange when multiple sensors are used.

Keywords

People tracking Robot Operating System real-time RGB-D data mobile robots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajracharya, M., Moghaddam, B., Howard, A., Brennan, S., Matthies, L.H.: A fast stereo-based system for detecting and tracking pedestrians from a moving vehicle. International Journal of Robotics Research 28, 1466–1485 (2009)CrossRefGoogle Scholar
  2. 2.
    Basso, F., Munaro, M., Michieletto, S., Pagello, E., Menegatti, E.: Fast and robust multi-people tracking from RGB-D data for a mobile robot. In: Lee, S., Cho, H., Yoon, K.-J., Lee, J. (eds.) Intelligent Autonomous Systems 12. AISC, vol. 193, pp. 265–276. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bellotto, N., Hu, H.: Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of bayesian filters. Auton. Robots 28, 425–438 (2010)CrossRefGoogle Scholar
  4. 4.
    Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. J. Image Video Process. 2008, 1:1–1:10 (2008)CrossRefGoogle Scholar
  5. 5.
    Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Robust tracking-by-detection using a detector confidence particle filter. In: IEEE International Conference on Computer Vision (October 2009)Google Scholar
  6. 6.
    Carballo, A., Ohya, A., Yuta, S.: People detection using range and intensity data from multi-layered laser range finders. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5849–5854 (2010)Google Scholar
  7. 7.
    Choi, W., Pantofaru, C., Savarese, S.: Detecting and tracking people using an rgb-d camera via multiple detector fusion. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1076–1083. IEEE (2011)Google Scholar
  8. 8.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition 2005, vol. 1, pp. 886–893 (June 2005)Google Scholar
  9. 9.
    Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-person tracking. In: IEEE Conference on Computer Vision and Pattern Recognition 2008, pp. 1–8 (2008)Google Scholar
  10. 10.
    Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Moving obstacle detection in highly dynamic scenes. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, ICRA 2009, Piscataway, NJ, USA, pp. 4451–4458 (2009)Google Scholar
  11. 11.
    Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88, 303–338 (2010)CrossRefGoogle Scholar
  12. 12.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, vol. 1, pp. 260–267 (2006)Google Scholar
  13. 13.
    Luber, M., Spinello, L., Arras, K.O.: People tracking in rgb-d data with on-line boosted target models. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011 (2011)Google Scholar
  14. 14.
    Martin, C., Schaffernicht, E., Scheidig, A., Gross, H.-M.: Multi-modal sensor fusion using a probabilistic aggregation scheme for people detection and tracking. Robotics and Autonomous Systems 54(9), 721–728 (2006)CrossRefGoogle Scholar
  15. 15.
    Mitzel, D., Leibe, B.: Real-time multi-person tracking with detector assisted structure propagation. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE (2011)Google Scholar
  16. 16.
    Mozos, O., Kurazume, R., Hasegawa, T.: Multi-part people detection using 2d range data. International Journal of Social Robotics 2, 31–40 (2010)CrossRefGoogle Scholar
  17. 17.
    Munaro, M., Basso, F., Menegatti, E.: Tracking people within groups with rgb-d data. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Algarve, Portugal (October 2012)Google Scholar
  18. 18.
    Navarro-Serment, L.E., Mertz, C., Hebert, M.: Pedestrian detection and tracking using three-dimensional ladar data. In: FSR, pp. 103–112 (2009)Google Scholar
  19. 19.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: Ros: an open-source robot operating system. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA (2009)Google Scholar
  20. 20.
    Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13 (2011)Google Scholar
  21. 21.
    Satake, J., Miura, J.: Robust stereo-based person detection and tracking for a person following robot. In: Workshop on People Detection and Tracking IEEE ICRA (2009)Google Scholar
  22. 22.
    Spinello, L., Arras, K.O.: People detection in rgb-d data. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011 (2011)Google Scholar
  23. 23.
    Spinello, L., Arras, K.O., Triebel, R., Siegwart, R.: A layered approach to people detection in 3d range data. In: Proc. 24th AAAI Conference on Artificial Intelligence, PGAI Track (AAAI 2010), Atlanta, USA (2010)Google Scholar
  24. 24.
    Spinello, L., Luber, M., Arras, K.O.: Tracking people in 3d using a bottom-up top-down people detector. In: IEEE International Conference on Robotics and Automation (ICRA 2011), Shanghai (2011)Google Scholar
  25. 25.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR 2001, vol. 1, pp. 511–518 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Matteo Munaro
    • 1
    Email author
  • Filippo Basso
    • 1
  • Stefano Michieletto
    • 1
  • Enrico Pagello
    • 1
  • Emanuele Menegatti
    • 1
  1. 1.Intelligent Autonomous Systems Laboratory (IAS-Lab), Department of Information EngineeringThe University of PadovaPadovaItaly

Personalised recommendations