Advertisement

A Case Study of Safety in the Design of Surgical Robots: The ARAKNES Platform

  • L. Alonso Sanchez
  • M. Q. Le
  • K. Rabenorosoa
  • C. Liu
  • N. Zemiti
  • P. Poignet
  • E. Dombre
  • A. Menciassi
  • P. Dario
Part of the Studies in Computational Intelligence book series (SCI, volume 466)

Abstract

This work presents a case study of safety in the design of the ARAKNES surgical robotic platform dedicated to single port laparoscopic surgery. The framework for the design of medical robots is shortly described and applied, focusing on safety. Moreover, it is explained how the design process can be placed in the context of the European community directives for medical devices.

Keywords

surgical robots safety standards design framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dombre, E., Poignet, P., Pierrot, F.: Design of Medical Robots. In: Troccaz, J. (ed.) Medical Robotics, 1st edn., pp. 141–176. Wiley (2011)Google Scholar
  2. 2.
    Troccaz, J., Lavallee, S., Hellion, E.: A passive arm with dynamic constraints: a solution to safety problems in medical robotics. In: International Conference on Systems, Man and Cybern. Systems Engineering in the Service of Humans, pp. 166–171 (1993)Google Scholar
  3. 3.
    Ng, W.S., Tan, C.K.: On safety enhancements for medical robots. Reliability Engineering & System Safety 54(1), 35–45 (1996)CrossRefGoogle Scholar
  4. 4.
    Rau, G., Radermacher, K., Thull, B., Von Pichler, C.: Aspects of Ergonomic System Design Applied to Medical Work Systems. In: Computer-integrated Surgery: Technology and Clinical Applications, pp. 203–221 (1996)Google Scholar
  5. 5.
    Lewis, C.L., Maciejewski, A.A.: Dexterity optimization of kinematically redundant manipulators in the presence of joint failures. Computers & Electrical Engineering 20(3), 273–288 (1994)CrossRefGoogle Scholar
  6. 6.
    Ikuta, K., Nokata, M.: General evaluation method of safety for human-care robots. In: International Conference on Robotics and Automation, vol. 3, pp. 2065–2072 (1999)Google Scholar
  7. 7.
    Khodabandehloo, K.: Analyses of robot systems using fault and event trees: case studies. Reliability Engineering & System Safety 53(3), 247–264 (1996)CrossRefGoogle Scholar
  8. 8.
    Connolly, B.: Software safety goal verification using fault tree techniques: a critically ill patient monitor example. In: Conference on Computer Assurance, Systems Integrity, Software Safety and Process Security, pp. 18–21 (1989)Google Scholar
  9. 9.
    Hamilton, D., Visinsky, M., Bennett, J., Cavallaro, J., Walker, I.: Fault tolerant algorithms and architectures for robotics. In: Electrotechnical Conference, pp. 1034–1036 (1994)Google Scholar
  10. 10.
    Dowler, N.J.: Applying software dependability principles to medical robotics. Computing & Control Engineering Journal 6(5), 222–225 (1995)CrossRefGoogle Scholar
  11. 11.
    Haddadin, S., Albu-Schaffer, A., De Luca, A., Hirzinger, G.: Collision detection and reaction: A contribution to safe physical human-robot interaction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3356–3363 (2008)Google Scholar
  12. 12.
    Sanchez, A., Petroni, G., Piccigallo, M., Scarfogliero, U., Niccolini, M., Liu, C., Stefanini, C., Zemiti, N., Menciassi, A., Poignet, P., Dario, P.: Real-Time Control and Evaluation of a Teleoperated Miniature Arm for Single Port Laparoscopy. In: International Conference in Medicine and Biology Society, pp. 7049–7053 (2011)Google Scholar
  13. 13.
    Piccigallo, M., Scarfogliero, U., Quaglia, C., Petroni, G., Valdastri, P., Menciassi, A., Dario, P.: Design of a novel bimanual robotic system for single-port laparoscopy. IEEE/ASME Transactions on Mechatronics 15(6), 871–878 (2010)Google Scholar
  14. 14.
    Galvao Neto, M., Ramos, A., Campos, J.: Single port laparoscopic access surgery. Techniques in Gastrointestinal Endoscopy 11(2), 84–93 (2009)CrossRefGoogle Scholar
  15. 15.
    Beira, R., Santos-Carreras, L., Rognini, G., Bleuler, H., Clavel, R.: A novel remote-center-of-motion parallel manipulator for minimally invasive surgery. In: Applied Bionics and Biomechanics, Special issue in Surgical Robotics (2010)Google Scholar
  16. 16.
    Poignet, P., Dombre, E., Merigeaux, O., Pierrot, F., Duchemin, G.: Design and control issues for intrinsically safe medical robots. International Journal on Industrial Robot 30(1), 83–88 (2003)CrossRefGoogle Scholar
  17. 17.
    Chiaverini, S., Siciliano, B., Egeland, O.: Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator. IEEE Transactions on Control Systems Technology 2(2), 123–134 (1994)CrossRefGoogle Scholar
  18. 18.
    ARAKNES Project Website, Internet, http://www.araknes.org (accessed on January 31, 2012)
  19. 19.
    Doctor Robot, I presume? International Electrotechnical Commission, http://www.iec.ch/etech/2011/etech_0711/ind-2.html (accessed on April 24, 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. Alonso Sanchez
    • 1
  • M. Q. Le
    • 1
  • K. Rabenorosoa
    • 1
  • C. Liu
    • 1
  • N. Zemiti
    • 1
  • P. Poignet
    • 1
  • E. Dombre
    • 1
  • A. Menciassi
    • 2
  • P. Dario
    • 2
  1. 1.Dept. of Robotics, LIRMMFrench National Center of Scientific Research (CNRS)MontpellierFrance
  2. 2.BioRobotics InstituteScuola Superiore Sant’AnnaPisaItaly

Personalised recommendations