More Complex Complexity: Exploring the Nature of Computational Irreducibility across Physical, Biological, and Human Social Systems

  • Brian Beckage
  • Stuart Kauffman
  • Louis J. Gross
  • Asim Zia
  • Christopher Koliba
Part of the Emergence, Complexity and Computation book series (ECC, volume 2)


The predictability of many complex systems is limited by computational irreducibility, but we argue that the nature of computational irreducibility varies across physical, biological and human social systems. We suggest that the computational irreducibility of biological and social systems is distinguished from physical systems by functional contingency, biological evolution, and individual variation. In physical systems, computationally irreducibility is driven by the interactions, sometimes nonlinear, of many different system components (e.g., particles, atoms, planets). Biological systems can also be computationally irreducible because of nonlinear interactions of a large number of system components (e.g., gene networks, cells, individuals). Biological systems additionally create the probability space into which the system moves: Biological evolution creates new biological attributes, stores this accumulated information in an organism’s genetic code, allows for individual genetic and phenotypic variation among interacting agents, and selects for the functionality of these biological attributes in a contextually dependent manner. Human social systems are biological systems that include these same processes, but whose computational irreducibility arises as well from sentience, i.e., the conscious perception of the adjacent possible, that drives social evolution of culture, governance, and technology. Human social systems create their own adjacent possible through the creativity of sentience, and accumulate and store this information culturally, as reflected in the emergence and evolution of, for example, technology. The changing nature of computational irreducibility results in a loss of predictability as one moves from physical to biological to human social systems, but also creates a rich and enchanting range of dynamics.


computational irreducibility complexity evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach (2009) ISBN 0521424267Google Scholar
  2. 2.
    Bateson, G.: Steps to an ecology of mind (1972) ISBN 0876689500Google Scholar
  3. 3.
    Beckage, B., Gross, L., Kauffman, S.: The limits to prediction in ecological systems. Ecosphere 2(11), 125 (2011), doi:10.1890/ES11-00211.1CrossRefGoogle Scholar
  4. 4.
    Beckage, B., Gross, L., Platt, W., Godsoe, W., Simberloff, D.: Individual variation and weak neutrality as determinants of species diversity. Frontiers of Biogeography 3(4), 145–155 (2012)Google Scholar
  5. 5.
    Berlinski, D.: The advent of the algorithm: the idea that rules the world (2000) ISBN 0756761662Google Scholar
  6. 6.
    Bock, W.J.: Explanatory history of the origin of feathers. American Zoologist 40, 478–485 (2000)CrossRefGoogle Scholar
  7. 7.
    Clark, J.S.: Individuals and the variation needed for high species diversity in forest frees. Science 327, 1129–1132 (2010)CrossRefGoogle Scholar
  8. 8.
    Cooper, B.: The incomputable reality. Nature 482, 465–465 (2012)CrossRefGoogle Scholar
  9. 9.
    Croll, D.A., Maron, J.L., Estes, J.A., Danner, E.M., Byrd, G.V.: Introduced Predators Transform Subarctic Islands from Grassland to Tundra. Science 307, 1959–1961 (2005)CrossRefGoogle Scholar
  10. 10.
    Dyson, G.: The dawn of computing. Nature 482, 459–460 (2012)CrossRefGoogle Scholar
  11. 11.
    French, R.M.: Dusting Off the Turing Test. Science 336, 164–165 (2012)CrossRefGoogle Scholar
  12. 12.
    Gibson, J.J.: The Theory of Affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, Acting, and Knowing (1977) ISBN 0-470-99014-7Google Scholar
  13. 13.
    Gilbert, N., Conte, R.: Artificial Societies: The Computer Simulation of Social Life. UCL Press, London (1995)Google Scholar
  14. 14.
    Grimm, V., Railsback, S.F.: Individual-based modeling and ecology. Princeton University Press (2005)Google Scholar
  15. 15.
    Hodges, A.: The man behind the machine. Nature 482, 441–441 (2012)CrossRefGoogle Scholar
  16. 16.
    Holland, J.H.: Genetic algorithms. Scientific American, 44–50 (1992) ISSN 0036-8733Google Scholar
  17. 17.
    Holland, J.H.: Adaptation in Natural and Artificial Systems (1975) ISBN 0472084607Google Scholar
  18. 18.
    Israeli, N., Goldenfeld, N.: Computational Irreducibility and the Predictability of Complex Physical Systems. Physical Review Letters 92, 074105 (2004)CrossRefGoogle Scholar
  19. 19.
    Israeli, N., Goldenfeld, N.: Coarse-graining of cellular automata, emergence, and the predictability of complex systems. Physical Review E 73, 026203 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Karl, T.R., Trenberth, K.E.: What is climate change? In: Lovejoy, T.E., Hannah, L.J. (eds.) Climate Change and Biodiversity. Yale University Press, New Haven (2005)Google Scholar
  21. 21.
    Kasting, J.F.: Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Research 34, 205–229 (1987)CrossRefGoogle Scholar
  22. 22.
    Koliba, C., Meek, J., Zia, A.: Governance networks in public administration and public policy. CRC Press/Taylor & Francis, Boca Raton, FL (2010)Google Scholar
  23. 23.
    Letiche, H., Lissack, M.: Making Room for Affordances. Emergence: Complexity and Organization (E:CO) 11(3), 61–72 (2009) ISSN 1532-7000Google Scholar
  24. 24.
    Longo, G., Montvil, M., Kauffman, S.: No entailing laws, but enablement in the evolution of the biosphere. arXiv:1201.2069v1 [q-bio.OT] (2012)Google Scholar
  25. 25.
    McAtee, W.L.: Distribution of Seeds by Birds. American Midland Naturalist 38, 214–223 (1947)CrossRefGoogle Scholar
  26. 26.
    Mercier, H., Sperber, D.: Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences 34(2), 57–74 (2011)CrossRefGoogle Scholar
  27. 27.
    Morin, X., Lechowicz, M.J., Auspurger, C., O’Keefe, J., Viner, D., Chuine, I.: Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology 15, 961–975 (2009)CrossRefGoogle Scholar
  28. 28.
    Nisbet, E.G., Sleep, N.H.: The habitat and nature of early life. Nature 409, 1083–1091 (2001)CrossRefGoogle Scholar
  29. 29.
    Perry, S.F., Wilson, R.J., Straus, C., Harris, M.B., Remmers, J.E.: Which came first, the lung or the breath? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129(1), 37–47 (2001)CrossRefGoogle Scholar
  30. 30.
    Rutten, M.G.: The history of atmospheric oxygen. Origins of Life and Evolution of Biospheres 2, 5–17 (1970)CrossRefGoogle Scholar
  31. 31.
    Schwarzschild, K.: Uber das gravitationsfeld eines massenpunktes nach der Einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, p. 189 (1916a)Google Scholar
  32. 32.
    Schwarzschild, K.: Uber das Gravitationsfeld einer Kugel aus inkompressibler Flussigkeit nach der Einsteinschen Theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, p. 424 (1916b)Google Scholar
  33. 33.
    Sumida, S.S., Brochu, C.A.: Phylogenetic Context for the Origin of Feathers. American Zoologist 40, 486–503 (2000)CrossRefGoogle Scholar
  34. 34.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42(2), 230–265 (1936); correction ibid 43, 544–546 (1937)Google Scholar
  35. 35.
    Wolfram, S.: A New Kind of Science. Wolfram Media, UrbanaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Brian Beckage
    • 1
  • Stuart Kauffman
    • 2
  • Louis J. Gross
    • 3
  • Asim Zia
    • 4
  • Christopher Koliba
    • 4
  1. 1.Department of Plant BiologyUniversity of VermontBurlingtonUSA
  2. 2.Department of Mathematics, Department of Biochemistry, and Complexity GroupUniversity of VermontBurlingtonUSA
  3. 3.National Institute for Mathematical and Biological SynthesisUniversity of TennesseeKnoxvilleUSA
  4. 4.Department of Community Development and Applied EconomicsUniversity of VermontBurlingtonUSA

Personalised recommendations