Advertisement

Unpredictability and Computational Irreducibility

  • Hervé Zwirn
  • Jean-Paul Delahaye
Part of the Emergence, Complexity and Computation book series (ECC, volume 2)

Abstract

We explore several concepts for analyzing the intuitive notion of computational irreducibility and we propose a robust formal definition, first in the field of cellular automata and then in the general field of any computable function f from N to N. We prove that, through a robust definition of what means “to be unable to compute the n th step without having to follow the same path than simulating the automaton or to be unable to compute f(n) without having to compute f(i) for i = 1 to n–1”, this implies genuinely, as intuitively expected, that if the behavior of an object is computationally irreducible, no computation of its n th state can be faster than the simulation itself.

Keywords

Complexity logical depth cellular automata irreducibility computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antunes, L., Matos, A., Souto, A., Vitany, P.: Depth as Randomness Deficiency. Theory Comput. Syst. 45, 724–739 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ay, N., Müller, M., Szkola, A.: Effective complexity and its relation to logical depth. IEEE Transactions on Information Theory, 4593–4607 (2010)Google Scholar
  3. 3.
    Bennett, C.H.: Logical Depth and Physical Complexity. In: Herken, R. (ed.) The Universal Turing Machine- a Half-Century Survey. Oxford University Press (1988)Google Scholar
  4. 4.
    Bennett, C.H.: How to Define Complexity in Physics and Why. In: Gregersen, N.H. (ed.) From Complexity to Life: On the Emergence of Life and Meaning. Oxford University Press, New York (2003)Google Scholar
  5. 5.
    Bishop, R.: Chaos. Stanford Encyclopedia of Philosophy (2008), http://plato.stanford.edu/entries/chaos/
  6. 6.
    Calude, C.: Information and Randomness: An Algorithmic Perspective, 2nd edn. Springer, Berlin (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Chaitin, G.: Algorithmic Information Theory. Cambridge University Press (1992)Google Scholar
  8. 8.
    Chaitin, G.: Exploring Randomness. Springer, London (2001)MATHCrossRefGoogle Scholar
  9. 9.
    Cobham, A.: The intrinsic computational difficulty of functions. In: Proc. Logic, Methodology, and Philosophy of Science II. North Holland (1965)Google Scholar
  10. 10.
    Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15, 1–40 (2004)MathSciNetMATHGoogle Scholar
  11. 11.
    Copeland, J.: The Church-Turing Thesis, Stanford Encyclopedia of Philosophy (2002), http://plato.stanford.edu/entries/church-turing/
  12. 12.
    Delahaye, J.P.: Randomness, Unpredictability and Absence of Order. In: Dubucs, J.-P. (ed.) Philosophy of Probability, pp. 145–167. Kluwer, Dordrecht (1993)Google Scholar
  13. 13.
    Delahaye, J.P.: Information, complexité et hasard. Editions Hermès, Paris (1998)Google Scholar
  14. 14.
    Downey, R.G., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer (2010)Google Scholar
  15. 15.
    Gandy, R.: Church’s Thesis and Principles for Mechanisms. In: Barwise, J., Keisler, H.J., Kunen, K. (eds.) The Kleene Symposium. North-Holland, Amsterdam (1980)Google Scholar
  16. 16.
    Garey, M., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979)MATHGoogle Scholar
  17. 17.
    Goldreich, O.: Computational Complexity, a conceptual perspective. Cambridge University Press (2008)Google Scholar
  18. 18.
    Hartley, R.: Theory of Recursive Functions and Effective Computability. McGraw-Hill (1967); MIT Press (1987)Google Scholar
  19. 19.
    Hopcroft J.E., Ullman J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979); 3rd edition (with Rajeev Motwani) (2006) Google Scholar
  20. 20.
    Israeli, N., Goldenfeld, N.: Computational Irreducibility and the Predictability of Complex Physical Systems. Phys. Rev. Lett. 92 (2004)Google Scholar
  21. 21.
    Kolmogorov, A.N.: Three Approaches to the Quantitative Definition of Information. Problems Inform. Transmission 1(1), 1–7 (1965)MathSciNetGoogle Scholar
  22. 22.
    Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer (1997)Google Scholar
  23. 23.
    Lorenz, E.: The Essence of Chaos. University of Washington Press, Seattle (1993)MATHCrossRefGoogle Scholar
  24. 24.
    Martin-Löf, P.: The Definition of Random Sequences. Information and Control 9(6), 602–619 (1966)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Moser, P.: A general notion of useful information. In: Neary, T., Woods, D., Seda, A.K., Murphy, N. (eds.) CSP. EPTCS, vol. 1, pp. 164–171 (2008)Google Scholar
  26. 26.
    Odifreddi, P.: Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers. North-Holland (1989)Google Scholar
  27. 27.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  28. 28.
    von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)Google Scholar
  29. 29.
    Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press (2002)Google Scholar
  30. 30.
    Schuster H.G., Wolfram S.: Just Deterministic Chaos an Introduction, 4th revised and Enlarged edn. WILEY-VCH Verlag GmbH & Co. KGaA (2005)Google Scholar
  31. 31.
    Ulam, S.: Random Processes and Transformations. In: Proc. International Congress of Mathematicians, Cambridge, MA, vol. 2, pp. 264–275 (1952)Google Scholar
  32. 32.
    Wolfram, S.: Statistical Mechanics of Cellular Automata. Rev. Mod. Phys. 55, 601–644 (1983)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Wolfram, S.: Undecidability and intractability in theoretical physics. Phys. Rev. Letters 54(8) (1985)Google Scholar
  34. 34.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Inc. (2002)Google Scholar
  35. 35.
    Zak, M., Zbilut, J.P., Meyers, R.: From Instability to Intelligence, Complexity and Predictability in Nonlinear Dynamics. Springer (1997)Google Scholar
  36. 36.
    Zenil, H., Delahaye, J.P., Gaucherel, C.: Image Characterization and Classification by Physical Complexity. Complexity 17(3), 26–42 (2012), http://arxiv.org/abs/1006.0051 CrossRefGoogle Scholar
  37. 37.
    Zenil, H., Soler-Toscano, F., Joosten, J.J.: Empirical Encounters with Computational Irreducibility and Unpredictability. Minds and Machines 21 (2011), http://arxiv.org/abs/1104.3421
  38. 38.
    Zenil, H., Delahaye, J.P.: Numerical Evaluation of Algorithmic Complexity for Short Strings: A Glance into the Innermost Structure of Randomness. In: Applied Mathematics and Computation (2012)Google Scholar
  39. 39.
    Zwirn, H.: Les limites de la connaissance. Editions Odile Jacob, Paris (2000)Google Scholar
  40. 40.
    Zwirn, H.: Les systèmes complexes. Odile Jacob (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.UFR de Physique (Université Paris 7), and CMLA (ENS Cachan) & IHPST (CNRS)ParisFrance
  2. 2.Laboratoire d’Informatique Fondamentale de Lille (CNRS)LilleFrance

Personalised recommendations