Wolfram’s Classification and Computation in Cellular Automata Classes III and IV

  • Genaro J. Martínez
  • Juan C. Seck-Tuoh-Mora
  • Hector Zenil
Part of the Emergence, Complexity and Computation book series (ECC, volume 2)

Abstract

We conduct a brief survey on Wolfram’s classification, in particular related to the computing capabilities of Cellular Automata (CA) in Wolfram’s classes III and IV. We formulate and shed light on the question of whether Class III systems are capable of Turing-completeness or may turn out to be “too hot” in practice to be controlled and programmed. We show that systems in Class III are indeed capable of computation and that there is no reason to believe that they are unable, in principle, to reach Turing universality.

Keywords

cellular automata universality unconventional computing complexity gliders attractors Mean field theory information theory compressibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamatzky, A., Costello, B.L., Asai, T.: Reaction-Diffusion Computers. Elsevier (2005)Google Scholar
  2. 2.
    Adamatzky, A.: Identification of Cellular Automata. Taylor & Francis (1994)Google Scholar
  3. 3.
    Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives. Institute of Physics Publishing, Bristol (2001)MATHCrossRefGoogle Scholar
  4. 4.
    Adamatzky, A. (ed.): Collision-Based Computing. Springer (2002)Google Scholar
  5. 5.
    Adamatzky, A.: New media for collision-based computing. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 411–442. Springer (2002)Google Scholar
  6. 6.
    Adamatzky, A. (ed.): Game of Life Cellular Automata. Springer (2010)Google Scholar
  7. 7.
    Alonso-Sanz, R.: Reversible Cellular Automata with Memory. Physica D 175, 1–30 (2003)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Alonso-Sanz, R.: Elementary rules with elementary memory rules: the case of linear rules. Journal of Cellular Automata 1, 71–87 (2006)MathSciNetMATHGoogle Scholar
  9. 9.
    Alonso-Sanz, R.: Cellular Automata with Memory. Old City Publishing (2009)Google Scholar
  10. 10.
    Alonso-Sanz, R.: Discrete Systems with Memory. World Scientific Series on Nonlinear Science, Series A (2011)MATHGoogle Scholar
  11. 11.
    Alonso-Sanz, R., Martin, M.: Elementary CA with memory. Complex Systems 14(2), 99–126 (2003)MathSciNetMATHGoogle Scholar
  12. 12.
    Adamatzky, A., Martínez, G.J.: On generative morphological diversity of elementary cellular automata. Kybernetes 39(1), 72–82 (2010)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Aizawa, Y., Nishikawa, I.: Toward the classification of the patterns generated by one-dimensional cellular automata. In: Ikegami, G. (ed.) Dynamical Systems and Nonlinear Oscillators, pp. 210–222. World Scientific Press (1986)Google Scholar
  14. 14.
    Arbib, M.A.: Monogenic normal systems are universal. Journal of the Australian Mathematical 3(3), 301–306 (1969)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Baetens, J.M., De Baets, B.: Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians. Chaos 20 (2010)Google Scholar
  16. 16.
    Banks, E. R.: Information and transmission in cellular automata. PhD Dissertionm, Cambridge, MA, MIT (1971)Google Scholar
  17. 17.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical Plays, ch. 25, vol. 2. Academic Press (1982)Google Scholar
  18. 18.
    Clapham, N.T., Barlow, M., McKay, R.I.: Toward classifying randomly asynchronous cellular automata. In: Proceedings of the 6th International Conference on Complex Systems (CS 2002), pp. 63–71 (2002)Google Scholar
  19. 19.
    Chua, L.: A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, vol. 1, 2, 3, 4, 5. World Scientific Publishing Company (2006-2012)Google Scholar
  20. 20.
    Codd, E.F.: Cellular Automata. Academic Press, Inc., New York (1968)MATHGoogle Scholar
  21. 21.
    Cook, M.: Introduction to the activity of Rule 110 (copyright 1994-1998 Matthew Cook) (1998), http://w3.datanet.hu/~cook/Workshop/CellAut/Elementary/Rule110/
  22. 22.
    Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15(1), 1–40 (2004)MathSciNetMATHGoogle Scholar
  23. 23.
    Cook, M.: A Concrete View of Rule 110 Computation. In: Neary, T., Woods, D., Seda, A.K., Murphy, N. (eds.) The Complexity of Simple Programs, pp. 31–55. Elsevier (2011)Google Scholar
  24. 24.
    Chaté, H., Manneville, P.: Collective behaviours in Spatially Extended Systems with Local Interactions and Synchronous Updating. Progress in Theoretical Physics 87, 1–60 (1992)CrossRefGoogle Scholar
  25. 25.
    Chaté, H., Ginelli, F., Grégoire, G., Peruani, F., Raynaud, F.: Modeling collective motion: variations on the Vicsek model. The European Physical Journal B 64(3-4), 451–456 (2008)CrossRefGoogle Scholar
  26. 26.
    Culik II, K., Yu, S.: Undecidability of CA Classification Schemes. Complex Systems 2(2), 177–190 (1988)MathSciNetMATHGoogle Scholar
  27. 27.
    Davis, M. (ed.): Solvability, Provability, Definability: The Collected Works of Emil L. Post. Birkhäuser, Boston (1994)Google Scholar
  28. 28.
    Das, R., Mitchell, M., Crutchfield, J.P.: A genetic algorithm discovers particle-based computation in cellular automata. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 344–353. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  29. 29.
    Durr, C., Rapaport, I., Theyssier, G.: Cellular automata and communication complexity. Theoretical Computer Science 322, 355–368 (2004)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Eppstein, D.: Wolfram’s Classification of Cellular Automata (1999), http://www.ics.uci.edu/~eppstein/ca/wolfram.html
  31. 31.
    Eppstein, D.: Searching for spaceships. MSRI Publications 42, 433–452 (2002)Google Scholar
  32. 32.
    Fatès, N., Morvan, M.: An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata. Complex Systems 16, 1–27 (2005)MathSciNetGoogle Scholar
  33. 33.
    Fredkin, E., Toffoli, T.: Design Principles for Achieving High-Performance Submicron Digital Technologies. In: Adamatzky, A. (ed.) Game of Life Cellular Automata, pp. 27–46. Springer (2001)Google Scholar
  34. 34.
    Gardner, M.: Mathematical Games — The fantastic combinations of John H. Conway’s new solitaire game Life. Scientific American 223, 120–123 (1970)CrossRefGoogle Scholar
  35. 35.
    Griffeath, D., Moore, C.: Life Without Death is P-complete. Complex Systems 10(6), 437–447 (1996)MathSciNetMATHGoogle Scholar
  36. 36.
    Griffeath, D., Moore, C.: New constructions in cellular automata. Oxford University Press (2003)Google Scholar
  37. 37.
    Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman and Company, New York (1987)MATHGoogle Scholar
  38. 38.
    Goles, E., Moreira, A., Rapaport, I.: Communication complexity in number-conserving and monotone cellular automata. Theoretical Computer Science 412, 3616–3628 (2011)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Gunji, Y.-P.: Inducing Class 4 behaviour on the Basis of Lattice Analysis. Complex Systems 19(5), 177–194 (2010)MathSciNetMATHGoogle Scholar
  40. 40.
    Gutowitz, H.A., Victor, J.D., Knight, B.W.: Local structure theory for cellular automata. Physica D 28, 18–48 (1987)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Gutowitz, H.A., Victor, J.D.: Local structure theory in more that one dimension. Complex Systems 1(1), 57–68 (1987)MathSciNetMATHGoogle Scholar
  42. 42.
    Gutowitz, H.A.: Mean Field vs. Wolfram Classification of Cellular Automata (1989), Historical link http://www.santafe.edu/~hag/mfw/mfw.html, Functional link http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4525
  43. 43.
    Gutowitz, H.A., Victor, J.D.: Local structure theory: calculation on hexagonal arrays, and iteraction of rule and interaction of rule and lattice. Journal of Statistical Physical 54, 495–514 (1999)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Hey, A.J.G.: Feynman and computation: exploring the limits of computers. Perseus Books (1998)Google Scholar
  45. 45.
    Hutton, T.J.: Codd’s self-replicating computer. Artificial Life 16(2), 99–117 (2010)CrossRefGoogle Scholar
  46. 46.
    Imai, K., Morita, K.: A computation-universal two-dimensional 8-state triangular reversible cellular automation. Theoret. Comput. Sci. 231, 181–191 (2000)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Jakubowski, M.H., Steiglitz, K., Squier, R.: Computing with Solitons: A Review and Prospectus. Multiple-Valued Logic 6(5-6) (2001) (also republished in [4])Google Scholar
  48. 48.
    Kari, J.: Representation of Reversible Cellular Automata with Block Permutations. Mathematical Systems Theory 29(1), 47–61 (1996)MathSciNetMATHGoogle Scholar
  49. 49.
    Kudlek, M., Rogozhin, Y.: Small Universal Circular Post Machine. Computer Science Journal of Moldova 9(25), 34–52 (2001)MathSciNetMATHGoogle Scholar
  50. 50.
    Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press (1993)Google Scholar
  51. 51.
    Langton, C.G.: Self Reproduction in Cellular Automata. Physica D 10, 135–144 (1984)CrossRefGoogle Scholar
  52. 52.
    Langton, C.G.: Studying Artificial Life with Cellular Automata. Physica D 22(1-3), 120–149 (1986)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Li, W., Nordahl, M.G.: Transient behaviour of cellular automaton Rule 110. Physics Letters A 166, 335–339 (1992)CrossRefGoogle Scholar
  54. 54.
    Li, W., Packard, N.: The Structure of the Elementary Cellular Automata Rule Space. Complex Systems 4(3), 281–297 (1990)MathSciNetGoogle Scholar
  55. 55.
    Redeker, M., Adamatzky, A., Martínez, G.J.: Expressiveness of Elementary Cellular Automata (submitted)Google Scholar
  56. 56.
    Martínez, G.J., Adamatzky, A., Alonso-Sanz, A., Seck-Tuoh-Mora, J.C.: Complex dynamic emerging in Rule 30 with majority memory. Complex Systems 18(3), 345–365 (2010)Google Scholar
  57. 57.
    Martínez, G.J., Adamatzky, A., Alonso-Sanz, A.: Complex dynamics of cellular automata emerging in chaotic rules. Int. J. Bifurcation and Chaos 22(2) (2012)Google Scholar
  58. 58.
    Margenstern, M.: Cellular Automata in Hyperbolic Spaces. Old City Publishing, Inc. (2007)Google Scholar
  59. 59.
    Margolus, N.H.: Physics-like models of computation. Physica D 10(1-2), 81–95 (1984)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Margolus, N.H.: Crystalline Computation. In: Hey, A.J.G. (ed.) Feynman and Computation: Exploring the Limits of Computers, pp. 267–305. Perseus Books (1998)Google Scholar
  61. 61.
    Margolus, N.H.: Universal Cellular Automata Based on the Collisions of Soft Spheres. In: Griffeath, D., Moore, C. (eds.) New Constructions in Cellular Automata, pp. 231–260. Oxford University Press (2003)Google Scholar
  62. 62.
    Martínez, G.J., Adamatzky, A., Seck-Tuoh-Mora, J.C., Alonso-Sanz, A.: How to make dull cellular automata complex by adding memory: Rule 126 case study. Complexity 15(6), 34–49 (2010)MathSciNetGoogle Scholar
  63. 63.
    Martínez, G.J., Morita, K., Adamatzky, A., Margenstern, M.: Majority Adder Implementation by Competing Patterns in Life-Like Rule B2/S2345. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) Unconventional Computation. LNCS, vol. 6079, pp. 93–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  64. 64.
    Martínez, G.J., McIntosh, H.V., Seck-Tuoh-Mora, J.C.: Gliders in Rule 110. Int. J. of Unconventional Computing 2(1), 1–49 (2006)Google Scholar
  65. 65.
    Martínez, G.J., McIntosh, H.V., Seck-Tuoh-Mora, J.C., Chapa-Vergara, S.V.: Reproducing the cyclic tag system developed by Matthew Cook with Rule 110 using the phases f1_1. Journal of Cellular Automata 6(2-3), 121–161 (2011)MathSciNetMATHGoogle Scholar
  66. 66.
    Martínez, G.J., Adamatzky, A., Stephens, C.R., Hoeflich, A.F.: Cellular automaton supercolliders. International Journal of Modern Physics C 22(4), 419–439 (2011)MATHCrossRefGoogle Scholar
  67. 67.
    McIntosh, H.V.: Wolfram’s Class IV and a Good Life. Physica D 45, 105–121 (1990)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    McIntosh, H.V.: Linear Cellular Automata via de Bruijn Diagrams (1991), http://delta.cs.cinvestav.mx/~mcintosh/oldweb/cf/debruijn.html
  69. 69.
    McIntosh, H.V.: Reversible Cellular Automata (1991), http://delta.cs.cinvestav.mx/~mcintosh/oldweb/ra/ra.html
  70. 70.
    McIntosh, H.V.: Rule 110 as it relates to the presence of gliders (1999), http://delta.cs.cinvestav.mx/~mcintosh/comun/RULE110W/RULE110.html
  71. 71.
    McIntosh, H.V.: A Concordance for Rule 110 (2000), http://delta.cs.cinvestav.mx/~mcintosh/comun/ccord/ccord.html
  72. 72.
    McIntosh, H.V.: Rule 110 Is Universal! (2002), http://delta.cs.cinvestav.mx/~mcintosh/comun/texlet/texlet.html
  73. 73.
    McIntosh, H.V.: One Dimensional Cellular Automata. Luniver Press (2009)Google Scholar
  74. 74.
    Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cellular automata. Trans. IEICE Japan  E-72, 758–762 (1989)Google Scholar
  75. 75.
    Mitchell, M., Hraber, P.T., Crutchfield, J.P.: Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations. Complex Systems 7(2), 89–130 (1993)MATHGoogle Scholar
  76. 76.
    Mills, J.W.: The Nature of the Extended Analog Computer. Physica D 237(9), 1235–1256 (2008)MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Morita, K., Margenstern, M., Imai, K.: Universality of reversible hexagonal cellular automata. Theoret. Informatics Appl. 33, 535–550 (1999)MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Morita, K.: A simple construction method of a reversible finite automaton out of Fredkin gates, and its related problem. Trans. IEICE Japan  E-73, 978–984 (1990)Google Scholar
  79. 79.
    Morita, K.: Simple universal one-dimensional reversible cellular automata. Journal of Cellular Automata 2, 159–166 (2007)MathSciNetMATHGoogle Scholar
  80. 80.
    Morita, K.: Reversible computing and cellular automata—A survey. Theoretical Computer Science 395, 101–131 (2008)MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Morita, K., Tojima, Y., Imai, K., Ogiro, T.: Universal Computing in Reversible and Number-Conserving Two-Dimensional Cellular Spaces. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 161–199. Springer (2002)Google Scholar
  82. 82.
    Margolus, N., Toffoli, T., Vichniac, G.: Cellular-Automata Supercomputers for Fluid Dynamics Modeling. Physical Review Letters 56(16), 1694–1696 (1986)CrossRefGoogle Scholar
  83. 83.
    Nasu, M.: Local Maps Inducing Surjective Global Maps of One-Dimensional Tesselation Automata. Mathematical Systems Theory 11, 327–351 (1978)MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Park, J.K., Steiglitz, K., Thurston, W.P.: Soliton-like behaviour in automata. Physica D 19, 423–432 (1986)MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Rendell, P.: Turing universality of the game of life. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 513–540. Springer (2002)Google Scholar
  86. 86.
    Rendell, P.: A Universal Turing Machine in Conway’s Game of Life. In: Proceedings of the 2011 International Conference on High Performance Computing & Simulation, pp. 764–772. IEEE Xplore (2011) 10.1109/HPCSim.2011.5999906Google Scholar
  87. 87.
    Sapin, E., Bailleux, O., Chabrier, J.-J., Collet, P.: A New Universal Cellular Automaton Discovered by Evolutionary Algorithms. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 175–187. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  88. 88.
    Sapin, E., Bailleux, O., Chabrier, J.-J., Collet, P.: Demonstration of the Universality of a New Universal Cellular Automaton. Int. J. Unconventional Computing 3(2), 79–103 (2007)Google Scholar
  89. 89.
    Seck-Tuoh-Mora, J.C., Chapa-Vergara, S.V., Martínez, G.J., McIntosh, H.V.: Procedures for calculating reversible one-dimensional cellular automata. Physica D 202, 134–141 (2005)MathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    Seck-Tuoh-Mora, J.C., Hernández, M.G., McIntosh, H.V., Chapa-Vergara, S.V.: The Inverse behaviour of a Reversible One-Dimensional Cellular Automaton Obtained by a Single Welch Diagram. In: Adamatzky, A., Sanz, R.A., Lawniczak, A., Martínez, G.J., Morita, K., Worsh, T. (eds.) Automata 2008: Theory and Applications of Cellular Automata, pp. 114–125. Luniver Press (2008)Google Scholar
  91. 91.
    Seck-Tuoh-Mora, J.C., Martínez, G.J., McIntosh, H.V.: The Inverse behaviour of a Reversible One-Dimensional Cellular Automaton Obtained by a Single Welch Diagram. Journal of Cellular Automata 1(1), 25–39 (2006)MathSciNetMATHGoogle Scholar
  92. 92.
    Sipper, M.: Evolution of Parallel Cellular Machines. LNCS, vol. 1194. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  93. 93.
    Siwak, P.: Iterons of Automata. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 299–354. Springer (2002)Google Scholar
  94. 94.
    Sutner, K.: A note on Culik-Yu classes. Complex Systems 3(1), 107–115 (1989)MathSciNetMATHGoogle Scholar
  95. 95.
    Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Systems 5(1), 19–30 (1991)MathSciNetMATHGoogle Scholar
  96. 96.
    Sutner, K.: Classification of Cellular Automata. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, Part 3, pp. 755–768 (2009)Google Scholar
  97. 97.
    Suzudo, T.: Spatial pattern formation in asynchronous cellular automata with mass conservation. Physica A 343, 185–200 (1994)MathSciNetGoogle Scholar
  98. 98.
    Toffoli, T.: Non-Conventional Computers. In: Webster, J. (ed.) Encyclopedia of Electrical and Electronics Engineering, pp. 455–471. Wiley & Sons (1998)Google Scholar
  99. 99.
    Tommaso, T., Norman, M.: Cellular Automata Machines. The MIT Press, Cambridge (1987)Google Scholar
  100. 100.
    Tomassini, M., Venzi, M.: Evolving Robust Asynchronous Cellular Automata for the Density Task. Complex Systems 13(1), 185–204 (2002)MathSciNetGoogle Scholar
  101. 101.
    Israeli, N., Goldenfeld, N.: Computational Irreducibility and the Predictability of Complex Physical Systems. Phys. Rev. Lett. 92, 74105–74108 (2004)CrossRefGoogle Scholar
  102. 102.
    Voorhees, B.H.: Computational analysis of one-dimensional cellular automata. World Scientific Series on Nonlinear Science, Series A, vol. 15 (1996)Google Scholar
  103. 103.
    Voorhees, B.H.: Remarks on Applications of De Bruijn Diagrams and Their Fragments. Journal of Cellular Automata 3(3), 187–204 (2008)MathSciNetMATHGoogle Scholar
  104. 104.
    von Neumann, J.: Theory of Self-reproducing Automata. University of Illinois Press, Urbana and London (1966) (edited and completed by A. W. Burks)Google Scholar
  105. 105.
    Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata. Addison-Wesley Publishing Company (1992)Google Scholar
  106. 106.
    Worsch, T., Nishio, H.: Achieving Universality of CA by Changing the neighbourhood. Journal of Cellular Automata 4(3), 237–246 (2009)MathSciNetMATHGoogle Scholar
  107. 107.
    Wolfram, S.: Statistical Mechanics of Cellular automata. Reviews of Modern Physics 55(3), 601–644 (1983)MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)MathSciNetCrossRefGoogle Scholar
  109. 109.
    Wolfram, S.: Computation Theory of Cellular Automata. Communications in Mathematical Physics 96, 15–57 (1984)MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Wolfram, S.: Random Sequence Generation by Cellular Automata. Advances in Applied Mathematics 7, 123–169 (1986)MathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    Wolfram, S.: Cellular Automata Supercomputing. In: Wilhelmson, R.B. (ed.) High Speed Computing: Scientific Applications and Algorithm Design, pp. 40–48. University of Illinois Press (1988)Google Scholar
  112. 112.
    Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley Publishing Company (1994)Google Scholar
  113. 113.
    Wolfram, S.: Twenty Problems in the Theory of Cellular Automata. Physica Scripta T9, 170–183 (1985)MathSciNetCrossRefGoogle Scholar
  114. 114.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., Champaign (2002)MATHGoogle Scholar
  115. 115.
    Worsch, T.: Cellular Automata as Models of Parallel Computation. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 741–755. Springer (2009)Google Scholar
  116. 116.
    Wolz, D., de Oliveira, P.P.B.: Very effective evolutionary techniques for searching cellular automata rule spaces. Journal of Cellular Automata 3(4), 289–312 (2008)MathSciNetMATHGoogle Scholar
  117. 117.
    Wuensche, A.: Genomic Regulation Modeled as a Network with Basins of Attraction. In: Altman, R.B., Dunker, A.K., Hunter, L., Klien, T.E. (eds.) Pacific Symposium on Biocomputing 1998, pp. 89–102. World Scientific, Singapore (1998)Google Scholar
  118. 118.
    Wuensche, A.: Classifying Cellular Automata Automatically. Complexity 4(3), 47–66 (1999)MathSciNetCrossRefGoogle Scholar
  119. 119.
    Zenil, H.: Compression-based Investigation of the Dynamical Properties of Cellular Automata and Other Systems. Complex Systems 19(1), 1–28 (2010)MathSciNetMATHGoogle Scholar
  120. 120.
    Zenil, H.: Nature-like Computation and a Measure of Computability. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds.) Natural Computing/Unconventional Computing and its Philosophical Significance. SAPERE Series. Springer (2012)Google Scholar
  121. 121.
    Zenil, H.: On the Dynamic Qualitative behaviour of Universal Computation. Complex Systems 20(3), 265–278 (2012)MathSciNetGoogle Scholar
  122. 122.
    Zenil, H.: Programmability Tests for Natural Computation with the Game of Life as a Case Study. Journal of Experimental and Theoretical Artificial Intelligence (accepted) (forthcoming)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Genaro J. Martínez
    • 1
    • 2
  • Juan C. Seck-Tuoh-Mora
    • 3
  • Hector Zenil
    • 4
  1. 1.Unconventional Computing Center, Bristol Institute of TechnologyUniversity of the West of EnglandBristolUK
  2. 2.Departamento de Ciencias e Ingeniería de la ComputaciónEscuela Superior de Cómputo, Instituto Politécnico NacionalMéxicoMéxico
  3. 3.Área Académica de IngenieríaUniversidad Autónoma del Estado de HidalgoPachucaMéxico
  4. 4.Behavioural and Evolutionary Theory Lab Department of Computer ScienceUniversity of SheffieldSheffieldUK

Personalised recommendations