Advertisement

Artificial Cosmogenesis: A New Kind of Cosmology

Part of the Emergence, Complexity and Computation book series (ECC, volume 2)

Abstract

This paper introduces foundations for a new kind of cosmology. We advocate that computer simulations are needed to address two key cosmological issues. First, the robustness of the emergence of complexity, which boils down to ask: “what would remain the same if the tape of the universe were replayed?” Second, the much debated fine-tuning issue, which requires to answer the question: “are complex universes rare or common in the space of possible universes?” We argue that computer simulations are indispensable tools to address those two issues scientifically. We first discuss definitions of possible universes and of possible cosmic outcomes—such as atoms, stars, life or intelligence. This leads us to introduce a generalized Drake-like equation, the Cosmic Evolution Equation. It is a modular and conceptual framework to define research agendas in computational cosmology. We outline some studies of alternative complex universes. However, such studies are still in their infancy, and they can be fruitfully developed within a new kind of cosmology, heavily supported by computer simulations,

Artificial Cosmogenesis. The appendix [A] provides argumentative maps of the paper’s main thesis.

Keywords

artificial cosmogenesis cosmic evolution computational cosmology digital physics Drake equation Cosmic Evolution Equation robustness fine-tuning multiverse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, F.C.: Stars in Other Universes: Stellar Structure with Different Fundamental Constants. Journal of Cosmology and Astroparticle Physics (08) (August 7, 2008), http://arxiv.org/abs/0807.3697, doi:10.1088/1475-7516
  2. 2.
    Aguirre, A.: Cold Big-Bang Cosmology as a Counterexample to Several Anthropic Arguments. Physical Review D 64(8), 83508 (2001), http://arxiv.org/abs/astro-ph/0106143 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aunger, R.: Major Transitions in ‘Big’ History. Technological Forecasting and Social Change 74(8), 1137–1163 (2007a), doi:10.1016/j.techfore.2007.01.006CrossRefGoogle Scholar
  4. 4.
    Aunger, R.: A Rigorous Periodization of ‘Big’ History. Technological Forecasting and Social Change 74(8), 1164–1178 (2007b), doi:10.1016/j.techfore.2007.01.007CrossRefGoogle Scholar
  5. 5.
    Barrow, J.D., Morris, S.C., Freeland, S., Harper, C.: Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning. Cambridge University Press (2008)Google Scholar
  6. 6.
    Barrow, J.D., Tipler, F.J.: The Anthropic Cosmological Principle. Oxford University Press (1986)Google Scholar
  7. 7.
    Bedau, M.A.: The Evolution of Complexity. In: Mapping the Future of Biology. Studies in the Philosophy of Science, vol. 266, pp. 111–130. Springer, Netherlands (2009)CrossRefGoogle Scholar
  8. 8.
    Bennett, C.H.: Logical Depth and Physical Complexity. In: Herken, R. (ed.) The Universal Turing Machine: A Half-Century Survey, pp. 227–257. Oxford University Press (1988), http://www.research.ibm.com/people/b/bennetc/UTMX.pdf
  9. 9.
    Boylan-Kolchin, M., Springel, V., White, S.D.M., Jenkins, A., Lemson, G.: Resolving Cosmic Structure Formation with the Millennium-II Simulation. Monthly Notices of the Royal Astronomical Society 398(3), 1150–1164 (2009), http://arxiv.org/abs/0903.3041, doi:10.1111/j.1365-2966.2009.15191.xCrossRefGoogle Scholar
  10. 10.
    Bradbury, R.J., Ćirković, M.M., Dvorsky, G.: Dysonian Approach to Seti: A Fruitful Middle Ground? Journal of the British Interplanetary Society 64, 156–165 (2011)Google Scholar
  11. 11.
    Bradford, R.A.W.: The Inevitability of Fine Tuning in a Complex Universe. International Journal of Theoretical Physics 50(5), 1577–1601 (2011), http://rickbradford.co.uk/InevitabilityofFineTuningJun.pdf, doi:10.1007/s10773-011-0669-2MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chaitin, G.J., Calude, C., Casti, J., Davies, P.C.W., Svozil, K., Wolfram, S.: Is the Universe Random? In: Zenil, H. (ed.) Randomness Through Computation: Some Answers, More Questions, pp. 311–352. World Scientific Publishing Company (2011)Google Scholar
  13. 13.
    Cirkovic, M.M.: Sailing the Archipelago. In: Veal, D. (ed.) Collapse: V. 5: Philosophical Research and Development - The Copernican Imperative. Urbanomic (2009), http://ieet.org/archive/archipelago.pdf
  14. 14.
    Colyvan, M., Garfield, J.L., Priest, G.: Problems With the Argument From Fine Tuning. Synthese 145(3), 325–338 (2005), doi:10.1007/s11229-005-6195-0MATHCrossRefGoogle Scholar
  15. 15.
    Davies, P.C.W.: Our Place in the Universe. In: Leslie, J. (ed.) Modern Cosmology & Philosophy, pp. 311–318. Prometheus Books, Amherst (1998)Google Scholar
  16. 16.
    Davies, P.C.W.: The Goldilocks Engima: Why Is the Universe Just Right for Life? Mariner Books (2008)Google Scholar
  17. 17.
    Dawkins, R.: The God Delusion. 1st Mariner Books ed. Houghton Mifflin Co., Boston (2008)Google Scholar
  18. 18.
    Dick, S.J.: Plurality of Worlds: The Extraterrestrial Life Debate from Democritus to Kant. New Ed. Cambridge University Press (1982)Google Scholar
  19. 19.
    Drake, F.: The Radio Search for Intelligent Extraterrestrial Life. In: Mamikunian, G., Briggs, M.H. (eds.) Current Aspects of Exobiology, pp. 323–345. Pergamon, New York (1965)Google Scholar
  20. 20.
    Ellis, G.F.R.: Multiverses: Description, Uniqueness and Testing. In: Carr, B. (ed.) Universe or Multiverse? pp. 387–410. Cambridge University Press, Cambridge (2007a)Google Scholar
  21. 21.
    Ellis, G.F.R.: Issues in the Philosophy of Cosmology. In: Butterfield, J., Earman, J. (eds.) Handbook in Philosophy of Physics, pp. 1183–1285. Elsevier (2007), http://arxiv.org/abs/astro-ph/0602280
  22. 22.
    Ellis, G.F.R.: On the Nature of Causation in Complex Systems. Transactions of the Royal Society of South Africa 63(1), 69–84 (2008), http://www.mth.uct.ac.za/~ellis/Top-down%20Ellis.pdf, doi:10.1080/00359190809519211
  23. 23.
    Ellis, G.F.R., Kirchner, U., Stoeger, W.R.: Multiverses and Physical Cosmology. Monthly Notices of the Royal Astronomical Society 347(3), 921–936 (2004), http://arxiv.org/abs/astro-ph/0407329, doi:10.1111/j.1365-2966.2004.07261.xCrossRefGoogle Scholar
  24. 24.
    Freivogel, B., Kleban, M., Martnez, M.R., Susskind, L.: Observational Consequences of a Landscape. Journal of High Energy Physics (03), 039–039 (March 9, 2006), doi:10.1088/1126-6708/2006/03/039Google Scholar
  25. 25.
    Gould, S.J.: Wonderful Life: The Burgess Shale and the Nature of History. WW Norton & Company (1990)Google Scholar
  26. 26.
    Gribbin, J., Rees, M.J.: Cosmic Coincidences, Dark Matter, Mankind, and Anthropic Cosmology. Black Swan (1991)Google Scholar
  27. 27.
    Guo, Q., White, S., Boylan-Kolchin, M., De Lucia, G., Kauffmann, G., Lemson, G., Li, C., Springel, V., Weinmann, S.: From Dwarf Spheroidals to cD Galaxies: Simulating the Galaxy Population in a ΛCDM Cosmology. Monthly Notices of the Royal Astronomical Society 413, 101–131 (2011), http://arxiv.org/abs/1006.0106 CrossRefGoogle Scholar
  28. 28.
    Harnik, R., Kribs, G.D., Perez, G.: A Universe Without Weak Interactions. Physical Review D 74(3), 035006 (2006), http://arxiv.org/abs/hep-ph/0604027v1, doi:10.1103/PhysRevD.74.035006CrossRefGoogle Scholar
  29. 29.
    Hawking, S.W.: The Universe in a Nutshell. Bantam Books (2001)Google Scholar
  30. 30.
    Hoyle, F., Dunbar, D.N.F., Wenzel, W.A., Whaling, W.: A State in C12 Predicted from Astrophysical Evidence. Physical Review 92, 1095 (1953)Google Scholar
  31. 31.
    Jaffe, R.L., Jenkins, A., Kimchi, I.: Quark Masses: An Environmental Impact Statement. 0809.1647 (September 10, 2008), http://arxiv.org/abs/0809.1647, doi:10.1103/PhysRevD.79.065014
  32. 32.
    Kleijnen, J.P.C., Sanchez, S.M., Lucas, T.W., Cioppa, T.M.: A User’s Guide to the Brave New World of Designing Simulation Experiments. INFORMS Journal on Computing 17(3), 263–289 (2005), http://www.tilburguniversity.edu/research/institutes-and-research-groups/center/staff/kleijnen/informs_joc.pdf MATHCrossRefGoogle Scholar
  33. 33.
    Koperski, J.: Should We Care About Fine-Tuning? The British Journal for the Philosophy of Science 56(2), 303–319 (2005), doi:10.1093/bjps/axi118MathSciNetCrossRefGoogle Scholar
  34. 34.
    Leibniz, G.W.: 1710. Essais De Théodicée Sur La Bonté De Dieu, La Liberté De L’homme Et L’origine Du Mal. Garnier-Flammarion, Paris (1969)Google Scholar
  35. 35.
    Leslie, J.: Universes. Routledge (1989)Google Scholar
  36. 36.
    Lewis, D.K.: On the Plurality of Worlds. B. Blackwell, Oxford (1986)Google Scholar
  37. 37.
    Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications. Springer (1997)Google Scholar
  38. 38.
    McCabe, G.: The Structure and Interpretation of the Standard Model, 1st edn., vol. 2. Elsevier Science (2007)Google Scholar
  39. 39.
    McGrew, T., McGrew, L., Vestrup, E.: Probabilities and the Fine-Tuning Argument. Mind 110(440) (2001), http://commonsenseatheism.com/wp-content/uploads/2010/05/McGrew-Mcgrew-Vestrup-Probabilities-and-the-Fine-Tuning-Argument-a-skeptical-view.pdf
  40. 40.
    Miller, S.L.: A Production of Amino Acids Under Possible Primitive Earth Conditions. Science 117(3046), 528–529 (1953), doi:10.1126/science.117.3046.528CrossRefGoogle Scholar
  41. 41.
    Nottale, L.: Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity. World Scientific (1993)Google Scholar
  42. 42.
    Nottale, L.: Scale Relativity and Fractal Space-Time: Theory and Applications. Foundations of Science 15(2), 101–152 (2010), http://www.arxiv.org/abs/0912.5508, doi:10.1007/s10699-010-9170-2MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Nottale, L.: Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics. World Scientific Publishing Company (2011)Google Scholar
  44. 44.
    Rees, M.: Just Six Numbers: The Deep Forces That Shape the Universe. Weidenfeld and Nicholson, London (1999)Google Scholar
  45. 45.
    Saltelli, A., Ratto, M., Andres, T.: Global Sensitivity Analysis: The Primer. John Wiley & Sons (2008)Google Scholar
  46. 46.
    Saltelli, A., Annoni, P.: How to Avoid a Perfunctory Sensitivity Analysis. Environmental Modelling & Software 25(12), 1508–1517 (2010), doi:10.1016/j.envsoft.2010.04.012CrossRefGoogle Scholar
  47. 47.
    Salthe, S.N.: The Natural Philosophy of Entropy. Seed 2(2) (2002)Google Scholar
  48. 48.
    Schmidhuber, J.: Algorithmic Theories of Everything. Technical Report IDSIA-20-00, Lugano, Switzerland (2000), http://arxiv.org/abs/quant-ph/0011122
  49. 49.
    Smolin, L.: Did the Universe Evolve? Classical and Quantum Gravity 9(1), 173–191 (1992)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Springel, V., White, S.D.M., Jenkins, A., Frenk, C.S., Yoshida, N., Gao, L., Navarro, J., Thacker, R., Croton, D., Helly, J.: Simulations of the Formation, Evolution and Clustering of Galaxies and Quasars. Nature 435, 629–636 (2005), http://astronomy.sussex.ac.uk/~petert/archive/svirgo05.pdf.CrossRefGoogle Scholar
  51. 51.
    Stenger, V.J.: The Unconscious Quantum Metaphysics in Modern Physics and Cosmology. Prometheus Books, Amherst (1995)Google Scholar
  52. 52.
    Stenger, V.J.: Natural Explanations for the Anthropic Coincidences. Philo. 3(2), 50–67 (2000)CrossRefGoogle Scholar
  53. 53.
    Stenger, V.J.: The Fallacy of Fine-Tuning: Why the Universe Is Not Designed for Us. Prometheus Books (2011)Google Scholar
  54. 54.
    Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill, Irwin (2000)Google Scholar
  55. 55.
    Susskind, L.: The Cosmic Landscape: String Theory and the Illusion of Intelligent Design. Little Brown, New York (2005)Google Scholar
  56. 56.
    Susskind, L.: The Anthropic Landscape of String Theory. In: Carr, B. (ed.) Universe or Multiverse? pp. 247–266. Cambridge University Press, Cambridge (2007), http://arxiv.org/abs/hep-th/0302219 Google Scholar
  57. 57.
    Tegmark, M., Aguirre, A., Rees, M.J., Wilczek, F.: Dimensionless Constants, Cosmology, and Other Dark Matters. Physical Review D 73(2), 23505 (2006)CrossRefGoogle Scholar
  58. 58.
    Turchin, V.F.: The Phenomenon of Science. Columbia University Press, New York (1977), http://pespmc1.vub.ac.be/POS/TurPOS.pdf Google Scholar
  59. 59.
    Vaas, R.: Is There a Darwinian Evolution of the Cosmos? - Some Comments on Lee Smolin’s Theory of the Origin of Universes by Means of Natural Selection. In: MicroCosmos - MacroCosmos Conference, Aachen, Germany, September 2-5 (1998), http://arxiv.org/abs/gr-qc/0205119
  60. 60.
    Vaas, R.: Life, the Universe, and Almost Everything: Signs of Cosmic Design (2010), http://arxiv.org/abs/0910.5579
  61. 61.
    Vaas, R.: Cosmological Artificial Selection: Creation Out of Something? Foundations of Science 17(1), 25–28 (2012), http://arxiv.org/abs/0912.5508, doi:10.1007/s10699-010-9218-3CrossRefGoogle Scholar
  62. 62.
    Vidal, C.: The Future of Scientific Simulations: From Artificial Life to Artificial Cosmogenesis. In: Tandy, C. (ed.) Death and Anti-Death. Thirty Years After Kurt Gödel (1906-1978), vol. 6, pp. 285–318. Ria University Press (2008), http://arxiv.org/abs/0803.1087
  63. 63.
    Vidal, C.: Introduction to the Special Issue on the Evolution and Development of the Universe. Foundations of Science 15(2), 95–99 (2010a), http://www.arxiv.org/abs/0912.5508, doi:10.1007/s10699-010-9176-9MathSciNetCrossRefGoogle Scholar
  64. 64.
    Vidal, C.: Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics. Foundations of Science 15(4), 375–393 (2010b), http://arxiv.org/abs/0912.5508, doi:10.1007/s10699-010-9183-xMathSciNetCrossRefGoogle Scholar
  65. 65.
    Vidal, C.: Black Holes: Attractors for Intelligence? Presented at the Kavli Royal Society International Centre. Towards a scientific and societal agenda on extra-terrestrial life, October 4-5 (2010), http://arxiv.org/abs/1104.4362
  66. 66.
    Vidal, C.: Fine-tuning, Quantum Mechanics and Cosmological Artificial Selection. Foundations of Science 17(1), 29–38 (2012a), http://arxiv.org/abs/0912.5508, doi:10.1007/s10699-010-9219-2CrossRefGoogle Scholar
  67. 67.
    Vidal, C.: The Beginning and the End: The Meaning of Life in a Cosmological Perspective (PhD Thesis, to appear). Vrije Universiteit Brussel, Brussels (2012b)Google Scholar
  68. 68.
    Wolfram, S.: Undecidability and Intractability in Theoretical Physics. Physical Review Letters 54(8), 735–738 (1985), doi:10.1103/PhysRevLett.54.735MathSciNetCrossRefGoogle Scholar
  69. 69.
    Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)MATHGoogle Scholar
  70. 70.
    Zenil, H., Delahaye, J.-P.: On the Algorithmic Nature of the World. In: Burgin, M., Dodig-Crnkovic, G. (eds.) Information and Computation. World Scientific (2010), http://arxiv.org/abs/0906.3554
  71. 71.
    Zuse, K.: Calculating Space. Reedited (Project MAC MIT Translation). In: Zenil, H.A. (ed.) Computable Universe: Understanding Computation & Exploring Nature As Computation. World Scientific (1970/2012), ftp://ftp.idsia.ch/pub/juergen/zuserechnenderraum.pdf
  72. 72.
    Zwirn, H., Delahaye, J.-P.: Unpredictability and Computational Irreducibility. In: Zenil, H. (ed.) Irreducibility & Computational Equivalence Ten Years After Wolfram’s a New Kind of Science (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Center Leo Apostel, Global Brain Institute Evolution, Complexity and Cognition Research GroupVrije Universiteit Brussel (Free University of Brussels)BrusselsBelgium

Personalised recommendations