Advertisement

Computational Technosphere and Cellular Engineering

  • Mark Burgin
Part of the Emergence, Complexity and Computation book series (ECC, volume 2)

Abstract

The basic engineering problem is to build useful systems from given materials and with given tools. Here we explore this problem in the computational technosphere of computers, smartphones, networks and other information processing and communication devices created by people. The emphasis is on construction of different kinds of information processing automata by means of cellular automata. We call this engineering problem cellular engineering. Various types and levels of computing systems and models are considered in the context of cellular engineering.

Keywords

cellular automaton computational equivalence engineering modeling construction model of computation grid automaton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bornhofen, S., Lattaud, C.: Outlines of Artificial Life: A Brief History of Evolutionary Individual Based Models. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 226–237. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Braden, R., Faber, T., Handley, M.: From protocol stack to protocol heap: Role-based architecture. ACM SIGCOMM Computer Communication Review 33(1), 17–22 (2003)CrossRefGoogle Scholar
  3. 3.
    Burgin, M.: Information Algebras. Control Systems and Machines (6), 5–16 (1997) (in Russian)Google Scholar
  4. 4.
    Burgin, M.: Cluster Computers and Grid Automata. In: Proceedings of the ISCA 17th International Conference on Computers and their Applications, Honolulu, Hawaii. International Society for Computers and their Applications, pp. 106–109 (2003)Google Scholar
  5. 5.
    Burgin, M.: Unified Foundations of Mathematics, Preprint Mathematics LO/0403186, 39 p. (2004), electronic edition: http://arXiv.org
  6. 6.
    Burgin, M.: Superrecursive Algorithms. Springer, New York (2005)Google Scholar
  7. 7.
    Burgin, M.: Cellular Engineering. Complex Systems 18(1), 103–129 (2008)MathSciNetMATHGoogle Scholar
  8. 8.
    Crowcroft, J.: Toward a network architecture that does everything. Comm. ACM 51(1), 74–77 (2008)CrossRefGoogle Scholar
  9. 9.
    Burgin, M.: Measuring Power of Algorithms, Computer Programs, and Information Automata. Nova Science Publishers, New York (2010)Google Scholar
  10. 10.
    Deutsch, D.: Physics, Philosophy and Quantum Technology. In: Proceedings of the 6th International Conference on Quantum Communication, Measurement and Computing. Rinton Press, Princeton (2003)Google Scholar
  11. 11.
    Fredkin, E.: Digital Mechanics. Physica D, 254–270 (1990)Google Scholar
  12. 12.
    Kineman, J.J.: Modeling relations in nature and eco-informatics: A practical application of Rosenian complexity. Chemistry and Biodiversity 4(10), 2436–2457 (2007)CrossRefGoogle Scholar
  13. 13.
    Lloyd, S.: A theory of quantum gravity based on quantum computation. Preprint in Quantum Physics (2006) (arXiv:quant-ph/0501135)Google Scholar
  14. 14.
    von Neumann, J.: Theory of Self-Reproducing Automata. 1949 University of Illinois Lectures on the Theory and Organization of Complicated Automata, Edited and completed by Arthur W. Burks. University of Illinois Press, Urbana (1966)Google Scholar
  15. 15.
    Peterson, L.L., Davie, B.S.: Computer Networks: A System Approach. Morgan Kaufmann Publishers, San Francisco (2000)MATHGoogle Scholar
  16. 16.
    Rosen, R.: Life itself: A Comprehensive Inquiry into the Nature, Origin and Fabrication of Life. Columbia University Press, New York (1991)Google Scholar
  17. 17.
    Van Leeuwen, J., Wiedermann, J.: Breaking the Turing Barrier: The case of the Internet. Techn. Report, Inst. of Computer Science, Academy of Sciences of the Czech. Rep., Prague (2000)Google Scholar
  18. 18.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)Google Scholar
  19. 19.
    Zuse, K.: Rechnender Raum. Friedrich Vieweg & Sohn, Braunschweig (1969)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mark Burgin
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations