When and How Process Groups Can Be Used to Reduce the Renaming Space

  • Armando Castañeda
  • Michel Raynal
  • Julien Stainer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7702)


Considering the M-renaming problem and process groups, this paper investigates the following question: Is there a relation between the number of groups and the size of the new name space M? This question can be rephrased as follows: Can the initial partitioning of the processes into m groups allows the size of the renaming space M to be reduced, and if yes, how much?

This paper answers the previous questions. Let n denote the number of processes. Assuming that the processes are initially partitioned into m = n − ℓ non-empty groups, such that each process knows only its identity and its group number, the paper first presents a wait-free M-renaming algorithm whose size of the new name space is M = n + 2ℓ − 1. For \(\frac{n}{2} < m \leq n-1\) (i.e. \(1\leq \ell < \frac{n}{2}\)), we have M < 2n − 1, which shows that, when the number of groups is greater than \(\frac{n}{2}\), groups allow to circumvent the renaming lower bound in read/write systems. Then, on the lower bound size, the paper shows that there are pairs of values (n,m) such that there is no read/write wait-free M-renaming algorithm for which M ≤ 2n − 2. This impossibility result breaks our hope to have a renaming algorithm providing a new name space whose size would decrease “regularly” as the number of groups increases from 1 to n. Finally, the paper considers the case where each group includes at least s processes. This algorithm shows that, when m is such that \(\frac{n}{s+1}< m < \frac{n}{s}\), there is an M-renaming algorithm where M = 3n − (s + 1)m − 1 = n(2 − s) + (s + 1)ℓ − 1. Hence, the paper leaves open the following question: For any n and s = 1, does the predicate \(m > \frac{n}{2}\) define a threshold on the number of groups which allows the 2n − 2 lower bound on the renaming space size to be bypassed?


Asynchronous read/write model Crash failure Distributed computability Process group Renaming problem Snapshot object Wait-freedom 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snapshots of Shared Memory. Journal of the ACM 40(4), 873–890 (1993)zbMATHCrossRefGoogle Scholar
  2. 2.
    Afek, Y., Gafni, E., Lieber, O.: Tight Group Renaming on Groups of Size g Is Equivalent to g-Consensus. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 111–126. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Afek, Y., Gamzu, I., Levy, I., Merritt, M., Taubenfeld, G.: Group Renaming. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 58–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an Asynchronous Environment. Journal of the ACM 37(3), 524–548 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Attiya, H., Rajsbaum, S.: The Combinatorial Structure of Wait-Free Solvable Tasks. SIAM Journal on Computing 31(4), 1286–1313 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn., 414 pages. Wiley-Interscience (2004)Google Scholar
  7. 7.
    Attiya, H., Paz, A.: Counting-Based Impossibility Proofs for Renaming and Set Agreement. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 356–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Borowsky, E., Gafni, E.: Generalized FLP Impossibility Result for t-Resilient Asynchronous Computations. In: Proc. 25th ACM Symposium on Theory of Computing, STOC 1993, pp. 91–100. ACM Press (1993)Google Scholar
  9. 9.
    Castañeda, A., Imbs, D., Rajsbaum, S., Raynal, M.: Renaming Is Weaker Than Set Agreement But for Perfect Renaming: A Map of Sub-consensus Tasks. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 145–156. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Castañeda, A., Rajsbaum, S.: New Combinatorial Topology Upper and Lower Bounds for Renaming: The Lower Bound. Distributed Computing 22(5-6), 287–301 (2010)zbMATHCrossRefGoogle Scholar
  11. 11.
    Castañeda, A., Rajsbaum, S.: New Combinatorial Topology Upper and Lower Bounds for Renaming: The Upper Bound. Journal of the ACM 59(1), 3 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Castañeda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared memory systems: an introduction. Elsevier Computer Science Review 5, 229–251 (2011)Google Scholar
  13. 13.
    Gafni, E.: Group-Solvability. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 30–40. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Gafni, E.: Renaming with k-Set-Consensus: An Optimal Algorithm into n + k – 1 Slots. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 36–44. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Gafni, E., Mostéfaoui, A., Raynal, M., Travers, C.: From Adaptive Renaming to Set Agreement. Theoretical Computer Science 410, 1328–1335 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus Tasks: Renaming Is Weaker Than Set Agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Gafni, E., Raynal, M., Travers, C.: Test&set, Adaptive Renaming and Set Agreement: a Guided Visit to Asynchronous Computability. In: 26th IEEE Symposium on Reliable Distributed Systems, SRDS 2007, pp. 93–102. IEEE Computer Society Press (2007)Google Scholar
  18. 18.
    Herlihy, M.P.: Wait-free synchronization. ACM Transactions on Programming Languages and Systems 13(1), 124–149 (1991)CrossRefGoogle Scholar
  19. 19.
    Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computability. Journal of the ACM 46(6), 858–923 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Imbs, D., Rajsbaum, S., Raynal, M.: The Universe of Symmetry Breaking Tasks. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 66–77. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Imbs, D., Raynal, M.: On Adaptive Renaming under Eventually Limited Contention. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 377–387. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement Is Impossible: The Topology of Public Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Armando Castañeda
    • 1
  • Michel Raynal
    • 2
    • 3
  • Julien Stainer
    • 2
  1. 1.Department of Computer ScienceTechnionHaifaIsrael
  2. 2.Institut Universitaire de FranceFrance
  3. 3.IRISA, Université de RennesRennes CedexFrance

Personalised recommendations