Neural Moving Object Detection by Pan-Tilt-Zoom Cameras

  • Alessio Ferone
  • Lucia Maddalena
  • Alfredo Petrosino
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 19)


Automated video surveillance using video analysis and understanding technology has become an important research topic in the area of computer vision. Most cameras used in surveillance are fixed, allowing to only look at one specific view of the surveilled area. Recently, the progress in sensor technologies is leading to a growing dissemination of Pan-Tilt-Zoom (PTZ) cameras, that can dynamically modify their field of view. Since PTZ cameras are mainly used for object detection and tracking, it is important to extract moving object regions from images taken with this type of camera. However, this is a challenging task because of the dynamic background caused by camera motion.

After reviewing background subtraction-based approaches to moving object detection in image sequences taken from PTZ cameras, we present a neural-based background subtraction approach where the background model automatically adapts in a self-organizing way to changes in the scene background. Experiments conducted on real image sequences demonstrate the effectiveness of the presented approach.


Visual Surveillance Motion Detection Background Subtraction Self Organization Artificial Neural Network PTZ Camera 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A system for video surveillance and monitoring. Technical Report CMU-RI-TR-00-12, Carnegie Mellon University, Pittsburgh, PA (2000)Google Scholar
  2. 2.
    Cheung, S.C.S., Kamath, C.: Robust techniques for background subtraction in urban traffic video. In: Panchanathan, S., Vasudev, B. (eds.) Proc. Visual Communications and Image Processing, SPIE, vol. 5308, pp. 881–892 (2004)Google Scholar
  3. 3.
    Elhabian, S., El Sayed, K., Ahmed, S.: Moving object detection in spatial domain using background removal techniques: State-of-art. Recent Patents on Computer Science 1(1), 32–54 (2008)CrossRefGoogle Scholar
  4. 4.
    Piccardi, M.: Background subtraction techniques: a review. In: Proc. IEEE SMC, vol. 4, pp. 3099–3104 (October 2004)Google Scholar
  5. 5.
    Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 14, 294–307 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: Proc. ICCV, vol. 1, pp. 255–261 (1999)Google Scholar
  7. 7.
    Huang, K., Wang, L., Tan, T., Maybank, S.: A real-time object detecting and tracking system for outdoor night surveillance. Pattern Recognition 41(1), 432–444 (2008)MATHCrossRefGoogle Scholar
  8. 8.
    Cristani, M., Farenzena, M., Bloisi, D., Murino, V.: Background subtraction for automated multisensor surveillance: a comprehensive review. EURASIP J. Adv. Signal Process, 43:1–43:24 (February 2010)Google Scholar
  9. 9.
    Elgammal, A.: Figure-ground segmentation-pixel-based. In: Moeslund, T.B., Hilton, A., Krüger, V., Sigal, L. (eds.) Visual Analysis of Humans, pp. 31–51. Springer, London (2011)CrossRefGoogle Scholar
  10. 10.
    Micheloni, C., Rinner, B., Foresti, G.: Video analysis in pan-tilt-zoom camera networks. EEE Signal Processing Magazine 27(5), 78–90 (2010)CrossRefGoogle Scholar
  11. 11.
    Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: 12th IEEE International Conference on Computer Vision, pp. 1219–1225 (October 2009)Google Scholar
  12. 12.
    Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process 17(7), 1168–1177 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Suhr, J.K., Jung, H.G., Li, G., Noh, S.I., Kim, J.: Background compensation for pan-tilt-zoom cameras using 1-d feature matching and outlier rejection, pp. 371–377. IEEE Computer Society Press, Los Alamitos (March 2011)Google Scholar
  14. 14.
    Micheloni, C., Foresti, G.L.: Real-time image processing for active monitoring of wide areas. Journal of Visual Communication and Image Representation 17(3), 589–604 (2006)CrossRefGoogle Scholar
  15. 15.
    Bartoli, A., Dalal, N., Horaud, R.: Motion panoramas. Computer Animation and Virtual Worlds 15(5), 501–517 (2004)CrossRefGoogle Scholar
  16. 16.
    Bevilacqua, A., Azzari, P.: A fast and reliable image mosaicing technique with application to wide area motion detection. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 501–512. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Del Bimbo, A., Lisanti, G., Masi, I., Pernici, F.: Continuous recovery for real time pan tilt zoom localization and mapping. In: 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 160–165 (September 2011)Google Scholar
  18. 18.
    Hayman, E., Eklundh, J.O.: Statistical background subtraction for a mobile observer. In: Proceedings Ninth IEEE International Conference on Computer Vision 2003, vol. 1, pp. 67–74 (October 2003)Google Scholar
  19. 19.
    Jin, Y., Tao, L., Di, H., Rao, N., Xu, G.: Background modeling from a free-moving camera by multi-layer homography algorithm. In: 15th IEEE International Conference on Image Processing (ICIP), pp. 1572–1575 (October 2008)Google Scholar
  20. 20.
    Mittal, A., Huttenlocher, D.: Scene modeling for wide area surveillance and image synthesis. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 160–167 (2000)Google Scholar
  21. 21.
    Monari, E., Pollok, T.: A real-time image-to-panorama registration approach for background subtraction using pan-tilt-cameras. In: 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 237–242 (September 2011)Google Scholar
  22. 22.
    Prati, A., Seghedoni, F., Cucchiara, R.: Fast dynamic mosaicing and person following. In: Proceedings of the 18th International Conference on Pattern Recognition, ICPR 2006, pp. 920–923. IEEE Computer Society, Washington, DC (2006)CrossRefGoogle Scholar
  23. 23.
    Ren, Y., Chua, C.S., Ho, Y.K.: Statistical background modeling for non-stationary camera. Pattern Recognition Letters 24(1-3), 183–196 (2003)MATHCrossRefGoogle Scholar
  24. 24.
    Sankaranarayanan, K., Davis, J.W.: PTZ Camera Modeling and Panoramic View Generation via Focal Plane Mapping. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 580–593. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Sugaya, Y., Kanatani, K.: Extracting moving objects from a moving camera video sequence. Mem. Fac. Eng. Okayama Univ. 39, 56–62 (2005)Google Scholar
  26. 26.
    Xue, K., Liu, Y., Chen, J., Li, Q.: Panoramic background model for PTZ camera. In: 3rd International Congress on Image and Signal Processing (CISP), vol. 1, pp. 409–413 (October 2010)Google Scholar
  27. 27.
    Zhang, J., Wang, Y., Chen, J., Xue, K.: A framework of surveillance system using a ptz camera. In: 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), vol. 1, pp. 658–662 (July 2010)Google Scholar
  28. 28.
    Bevilacqua, A., Azzari, P.: High-quality real time motion detection using PTZ cameras. In: IEEE International Conference on Video and Signal Based Surveillance, vol. 23 (November 2006)Google Scholar
  29. 29.
    Araki, S., Matsuoka, T., Takemura, H., Yokoya, N.: Real-time tracking of multiple moving objects in moving camera image sequences using robust statistics. In: Proceedings Fourteenth International Conference on Pattern Recognition, vol. 2, pp. 1433–1435 (August 1998)Google Scholar
  30. 30.
    Bin, L., Qiang, Z., Huanxia, L.: Research on background motion estimation and compensation in image sequences. In: 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pp. 1370–1373 (August 2011)Google Scholar
  31. 31.
    Cai, Q., Mitiche, A., Aggarwal, J.: Tracking human motion in an indoor environment. In: International Conference on Image Processing, vol. 1, pp. 215–218 (October 1995)Google Scholar
  32. 32.
    Lee, K.W., Ryu, S.W., Lee, S.J., Park, K.T.: Motion based object tracking with mobile camera. Electronics Letters 34(3), 256–258 (1998)CrossRefGoogle Scholar
  33. 33.
    Nguyen, T.T., Jeon, J.W.: Real-Time Background Compensation for PTZ Cameras Using GPU Accelerated and Range-Limited Genetic Algorithm Search. In: Ho, Y.-S. (ed.) PSIVT 2011, Part I. LNCS, vol. 7087, pp. 85–96. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  34. 34.
    Pham, X.D., Cho, J.U., Jeon, J.W.: Background compensation using hough transformation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2392–2397 (May 2008)Google Scholar
  35. 35.
    Rao, N., Di, H., Xu, G.: Joint correspondence and background modeling based on tree dynamic programming. In: 18th International Conference on Pattern Recognition (ICPR), vol. 2, pp. 425–428 (2006)Google Scholar
  36. 36.
    Shun, Z., Xiuqin, S., Liyin, X.: Global motion compensation for image sequences and motion object detection. In: 2010 International Conference on Computer Application and System Modeling (ICCASM), vol. 1, pp. 406–409 (October 2010)Google Scholar
  37. 37.
    Tordoff, B., Murray, D.: Reactive control of zoom while fixating using perspective and affine cameras. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 98–112 (2004)CrossRefGoogle Scholar
  38. 38.
    Szeliski, R.: Image alignment and stitching: a tutorial. Found. Trends. Comput. Graph. Vis. 2(1), 1–104 (2006)CrossRefGoogle Scholar
  39. 39.
    Jung, Y.K., Lee, K.W., Ho, Y.S.: Feature-Based Object Tracking with an Active Camera. In: Chen, Y.-C., Chang, L.-W., Hsu, C.-T. (eds.) PCM 2002. LNCS, vol. 2532, pp. 1137–1144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  40. 40.
    Kim, J., Ye, G., Kim, D.: Moving object detection under free-moving camera. In: 17th IEEE International Conference on Image Processing (ICIP), pp. 4669–4672 (September 2010)Google Scholar
  41. 41.
    Varcheie, P., Bilodeau, G.A.: Adaptive fuzzy particle filter tracker for a PTZ camera in an IP surveillance system. IEEE Transactions on Instrumentation and Measurement 60(2), 354–371 (2011)CrossRefGoogle Scholar
  42. 42.
    Guillot, C., Taron, M., Sayd, P., Pham, Q.C., Tilmant, C., Lavest, J.M.: Background Subtraction for PTZ Cameras Performing a Guard Tour and Application to Cameras with Very Low Frame Rate. In: Koch, R., Huang, F. (eds.) ACCV Workshops 2010, Part I. LNCS, vol. 6468, pp. 33–42. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  43. 43.
    Guillot, C., Taron, M., Sayd, P., Pham, Q.C., Tilmant, C., Lavest, J.M.: Background subtraction adapted to PTZ cameras by keypoint density estimation. In: Proc. BMVC., vol. 34, pp. 1–10 (2010)Google Scholar
  44. 44.
    Murray, D., Basu, A.: Motion tracking with an active camera. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 449–459 (1994)CrossRefGoogle Scholar
  45. 45.
    Xu, C., Liu, J., Kuipers, B.: Motion segmentation by learning homography matrices from motor signals. In: Proceedings of the 2011 Canadian Conference on Computer and Robot Vision, CRV 2011, pp. 316–323. IEEE Computer Society, Washington, DC (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alessio Ferone
    • 1
  • Lucia Maddalena
    • 2
  • Alfredo Petrosino
    • 1
  1. 1.Department of Applied ScienceUniversity of Naples ParthenopeNaplesItaly
  2. 2.Institute for High-Performance Computing and NetworkingNational Research CouncilRomeItaly

Personalised recommendations