Neural Nets and Surroundings pp 101-109

Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 19) | Cite as

A Collaborative Filter Approach to Adaptive Noise Cancellation

  • Michele Scarpiniti
  • Danilo Comminiello
  • Raffaele Parisi
  • Aurelio Uncini

Abstract

In this paper we propose a filter combination for the adaptive noise cancellation (ANC) problem in nonlinear environment. The architecture consists in a convex combination of two adaptive filters: a classical filter and a nonlinear filter based on Functional Links. While the convergence of the linear filter is very fast, the convergence of the nonlinear one might be slower, even if it provides a more accurate solution. The convex combination of both filters allows to reach good performances in terms of convergence and speed. In addition a variable step size is used in order to obtain better performance. Several experimental results, in different reverberant conditions, demonstrate the effectiveness of the proposed approach.

Keywords

Noise Cancellation Adaptive Filters Functional Link Network Convex Combination Variable Stepsize 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Widrow, B., Glover, J.R., McCool, J.M., Kaunitz, J., Williams, C.S., Hearn, R.H., Zeidler, J.R., Dong, E.J., Goodlin, R.C.: Adaptive noise cancellation: Principles and applications. Proceedings of the IEEE 63(12), 1692–1716 (1975)CrossRefGoogle Scholar
  2. 2.
    Ang, W.P., Farhang-Boroujeny, B.: A new class of gradient adaptive step-size LMS algorithms. IEEE Transactions on Signal Processing 49(4), 805–810 (2001)CrossRefGoogle Scholar
  3. 3.
    Hwang, J.K., Li, Y.P.: Variable step-size LMS algorithm with a gradient-based weighted average. IEEE Transactions on Signal Processing 16(12), 1043–1046 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arenas-García, J., Figueiras-Vidal, A.R.: Adaptive combination of normalised filters for robust system identification. Electronics Letters 41(15), 874–875 (2005)CrossRefGoogle Scholar
  5. 5.
    Arenas-García, J., Figueiras-Vidal, A.R., Sayed, A.H.: Mean-square performance of a convex combination of two adaptive filters. IEEE Transactions on Signal Processing 54(3), 1078–1090 (2006)CrossRefGoogle Scholar
  6. 6.
    Arenas-García, J., Gómez-Verdejo, V., Figueiras-Vidal, A.R.: New algorithms for improved adaptive convex combination of LMS transversal filters. IEEE Transactions on Instrumentation and Measurement 54(6), 2239–2249 (2005)CrossRefGoogle Scholar
  7. 7.
    Comminiello, D., Scarpiniti, M., Parisi, R., Uncini, A.: A functional link based nonlinear echo canceller exploiting sparsity. In: Proc. of International Workshop on Acoustic Echo and Noise Control (IWAENC 2010), Tel Aviv, Israel, August 30-September 2 (2010)Google Scholar
  8. 8.
    Comminiello, D., Azpicueta-Ruiz, L.A., Scarpiniti, M., Uncini, A., Arenas-García, J.: Functional link based architectures for nonlinear acoustic echo cancellation. In: Proc. of Hands-free Speech Communication and Microphone Arrays (HSCMA 2011), Edinburgh, UK, May 30-June 1, pp. 180–184 (2011)Google Scholar
  9. 9.
    Sicuranza, G.L., Carini, A.: A generalized FLANN filter for nonlinear active noise control. IEEE Transactions on Audio, Speech, and Language Processing 19(8), 2412–2417 (2011)CrossRefGoogle Scholar
  10. 10.
    Pao, Y.H.: Adaptive Pattern Recognition and Neural Networks. Addison-Wesley (1989)Google Scholar
  11. 11.
    Haykin, S.: Adaptive Filter Theory, 4th edn. Prentice-Hall (2001)Google Scholar
  12. 12.
    Paleologu, C., Ciochină, S., Benesty, J.: Variable step-size NMLS algorithm for under-modeling acoustic echo cancellation. IEEE Signal Processing Letters 15, 5–8 (2008)CrossRefGoogle Scholar
  13. 13.
    Azpicueta-Ruiz, L.A., Zeller, M., Figueiras-Vidal, A.R., Arenas-García, J., Kellermann, W.: Adaptive combination of volterra kernels and its application to nonlinear acoustic echo cancellation. IEEE Transactions on Audio, Speech, and Language Processing 19(1), 97–110 (2011)CrossRefGoogle Scholar
  14. 14.
    Campbell, D., Palomaki, K., Brown, G.: A Matlab simulation of shoebox room acoustics for use in research and teaching. Computing and Information Systems 9(3), 48 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michele Scarpiniti
    • 1
  • Danilo Comminiello
    • 1
  • Raffaele Parisi
    • 1
  • Aurelio Uncini
    • 1
  1. 1.Department of Information Engineering, Electronics and Telecommunications (DIET)“Sapienza” University of RomeRomeItaly

Personalised recommendations