PM10 Forecasting Using Kernel Adaptive Filtering: An Italian Case Study

  • Simone ScardapaneEmail author
  • Danilo Comminiello
  • Michele Scarpiniti
  • Raffaele Parisi
  • Aurelio Uncini
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 19)


Short term prediction of air pollution is gaining increasing attention in the research community, due to its social and economical impact. In this paper we study the application of a Kernel Adaptive Filtering (KAF) algorithm to the problem of predicting PM10 data in the Italian province of Ancona, and we show how this predictor is able to achieve a significant low error with the inclusion of chemical data correlated with the PM10 such as NO2.


Air pollution Nonlinear adaptive filtering Kernel Adaptive Filters Least Mean Square 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pope, C.A., Burnett, R., Thun, M.J., Calle, E.E., Krewskik, D., Ito, K., Thurston, G.: Lung cancer, cardiopulmonary mortality, and long term exposure to fine particulate air pollution. Journal of the American Medical Association 287, 1132–1141 (2002)CrossRefGoogle Scholar
  2. 2.
    Hooyberghs, F., Mensink, C., Dumont, G., Fierens, F., Brasseur, O.: A neural network forecast for daily average PM10 concentrations in Belgium. Atmospheric Environment 39(8), 3279–3289 (2005)CrossRefGoogle Scholar
  3. 3.
    Haykin, S.: Neural Networks and Learning Machines, 2nd edn. Pearson Publishing (2009)Google Scholar
  4. 4.
    Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences. Atmospheric Environment 32, 2627–2636 (1998)CrossRefGoogle Scholar
  5. 5.
    Arampongsanuwat, S., Meesad, P.: Prediction of PM10 using Support Vector Regression. In: 2011 International Conference on Information and Electronics Engineering IPCSIT, vol. 6, pp. 120–124 (2011)Google Scholar
  6. 6.
    Liu, W., Principe, J.C., Haykin, S.: Kernel Adaptive Filtering: A Comprehensive Introduction. Wiley (2010)Google Scholar
  7. 7.
    Aurangojeb, M.: Relationship between PM10, NO2 and particle number concentration: validity of air quality controls. Procedia Environmental Sciences 6, 60–69 (2011)CrossRefGoogle Scholar
  8. 8.
    Ito, K., Thurston, J.D., Nadas, A., Lippmann, M.: Monitor-to-monitor temporal correlation of air pollution and weather variables in the North-Central U.S. Journal of Exposure Analysis and Environmental Epidemiology 11(1), 21–32 (2001)CrossRefGoogle Scholar
  9. 9.
    Lippmann, M., Ito, K., Nadas, A., Burnett, R.T.: Association of particulate matter components with daily mortality and morbidity in urban populations. Journal of Exposure Analysis and Environmental Epidemiology 9(5), 5–72 (2000)Google Scholar
  10. 10.
    Rakesh, K., Abba, E.J.: Air pollution concentrations of PM2.5, PM10 and NO2 at ambient and kerbsite and their correlation in metro city - Mumbai. Environmental Monitoring and Assestment 119(1-3), 191–199 (2006)CrossRefGoogle Scholar
  11. 11.
    Scholkopf, B.: The kernel trick for distances. In: XIII Proceedings of the 2000 Conference on Advances in Neural Information Processing Systems, vol. 13, pp. 301–307 (2000)Google Scholar
  12. 12.
    Liu, W., Pokharel, P.P., Principe, J.C.: The Kernel Least-Mean-Square algorithm. IEEE Transactions on Signal Processing 56(2), 543–554 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer (1995)Google Scholar
  14. 14.
    Conover, W.J.: Practical Nonparametric Statistics. Wiley (1971)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Simone Scardapane
    • 1
    Email author
  • Danilo Comminiello
    • 1
  • Michele Scarpiniti
    • 1
  • Raffaele Parisi
    • 1
  • Aurelio Uncini
    • 1
  1. 1.Department of Information Engineering, Electronics and Telecommunications (DIET)“Sapienza” University of RomeRomeItaly

Personalised recommendations