Randomized Self-stabilization under Distributed Daemon for 6-Coloring Planar Graph

  • Chi-Hung Tzeng
  • Jehn-Ruey Jiang
  • Shing-Tsaan Huang
  • Cheng-Feng Yeh
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 20)


Self-stabilization is a fault-tolerant mechanism that enables a distributed system to recover from transient faults. In this paper, we consider the coloring problem and propose the first self-stabilizing algorithm under the distributed daemon model to 6-color planar graphs. The algorithm is randomized, anonymous and uniform. Starting from any initial configuration, it finds a proper coloring inO(n) rounds for an n-node graph.


Distributed computing Planar graph Randomization Self-stabilization Graph Coloring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brooks, R.L.: On colouring the nodes of a network. Proceedings of the Cambridge Philosophical Society, Math. Phys. Sci. 37, 194–197 (1941)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17, 643–644 (1974)MATHCrossRefGoogle Scholar
  3. 3.
    Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election. IEEE Transactions on Parallel and Distributed Systems 8(4), 424–440 (1997)CrossRefGoogle Scholar
  4. 4.
    Frederickson, G.N.: On linear-time algorithms for five-coloring planar graphs. Information Processing Letters 19(5), 219–224 (1984)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graph. Distributed Computing 7, 55–59 (1993)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing algorithms for orderings and colorings. International Journal of Foundations of Computer Science 16(1), 19–36 (2005)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloring of arbitrary graphs. In: Proceedings of the International Conference on Principles of Distributed Systems, OPODIS, pp. 55–70 (2000)Google Scholar
  8. 8.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing colorings. Information Processing Letters 87(5), 251–255 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Huang, S.T., Hung, S.S., Tzeng, C.H.: Self-stabilizing coloration in anonymous planar networks. Information Processing Letters 95(1), 307–312 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lipton, R.J., Miller, R.E.: A batching method for coloring planar graphs. Information Processing Letters 7(4), 185–188 (1978)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Sur, S., Srimani, P.K.: A self-stabilizing algorithm for coloring bipartite graphs. Information Sciences 69(3), 219–227 (1993)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Masuzawa, T., Tixeuil, S.: On bootstrapping topology knowledge in anonymous networks. ACM Transactions on Autonomous and Adaptive Systems 4(1), 1–27 (2009)CrossRefGoogle Scholar
  13. 13.
    Yeh, H.G., Zhu, X.: Resource-sharing system scheduling and circular chromatic number. Theoretical Computer Science 332, 447–460 (2005)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chi-Hung Tzeng
    • 1
  • Jehn-Ruey Jiang
    • 2
  • Shing-Tsaan Huang
    • 2
  • Cheng-Feng Yeh
    • 2
  1. 1.Dept. of Computer ScienceNational Tsing Hua UniversityHsinchu CityTaiwan
  2. 2.Dept. of Computer Science and Information EngineeringNational Central UniversityTaoyuanTaiwan

Personalised recommendations