Advertisement

Construct Independent Spanning Trees on Chordal Rings with Multiple Chords

  • Shyue-Ming Tang
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 20)

Abstract

Two spanning trees of a given graph G = (V, E) are said to be independent if they are rooted at the same vertex, say r, and for each vertex v ∈ V ∖ {r} two paths from r to v, one path in each tree, are internally disjoint. A set of spanning trees of G is said to be independent if they are pairwise independent. In 1989, Zehavi and Itai have conjectured that any k-connected graph has k independent spanning trees rooted at an arbitrary vertex. This conjecture is still open for k > 4.

A chordal ring is a ring network with extra links (chords) at each vertex. Y. Iwasaki et al. have proposed an algorithm to construct independent spanning trees on a chordal ring of degree four. (See [Y. Iwasaki et al., Independent panning trees of chordal rings, Information Processing Letters 69 (1999) 155-160].) In this paper, we shall propose an algorithm to solve the independent spanning trees problem on chordal rings with multiple chords.

Keywords

independent spanning trees chordal rings circulant graphs vertex-symmetric graphs internally disjoint paths fault-tolerant broadcasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arden, B.W., Lee, H.: Analysis of chordal ring network. IEEE Transactions on Computers 30, 291–295 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bermond, J.-C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: A survey. Journal of Parallel and Distributed Computing 24, 2–10 (1995)CrossRefGoogle Scholar
  3. 3.
    Cheriyan, J., Maheshwari, S.N.: Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs. Journal of Algorithms 9, 507–537 (1988)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Curran, S., Lee, O., Yu, X.: Finding four independent trees. SIAM Journal on Computing 35, 1023–1058 (2006)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Zimmerman, G.W., Esfahanian, A.-H.: Chordal rings as fault-tolerant loops. Discrete Applied Mathematics 37-38, 563–573 (1992)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Huck, A.: Independent trees in planar graphs. Graphs and Combinatorics 15, 29–77 (1999)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Itai, A., Rodeh, M.: The multi-tree approach to reliability in distributed networks. Information and Computation 79, 43–59 (1988)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Iwasaki, Y., Kajiwara, Y., Obokata, K., Igarashi, Y.: Independent spanning trees of chordal rings. Information Processing Letters 69, 155–160 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mukhopadhyaya, K., Sinha, B.P.: Fault-tolerant routing in distributed loop networks. IEEE Transactions on Computers 44, 1452–1456 (1995)MATHCrossRefGoogle Scholar
  10. 10.
    Rabin, M.O.: Efficient dispersal of information for secursity, load balencing, and fault tolerance. Journal of the ACM 36, 335–348 (1989)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ramanathan, P., Shin, K.G.: Reliable broadcast in hypercube multicomputers. IEEE Transactions on Computers 37, 1654–1657 (1988)CrossRefGoogle Scholar
  12. 12.
    Tang, S.-M., Wang, Y.-L., Leu, Y.-H.: Optimal independent spanning trees on hypercubes. Journal of Information Science and Engineering 20, 605–617 (2004)MathSciNetGoogle Scholar
  13. 13.
    Tang, S.-M., Yang, J.-S., Wang, Y.-L., Chang, J.-M.: independent spanning trees on multidimensional torus networks. IEEE Transactions on Computers 59, 93–102 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yang, J.-S., Chang, J.-M., Tang, S.-M., Wang, Y.-L.: Reducing the height of independent spanning trees in chordal rings. IEEE Transactions on Parallel and Distributed Systems 18, 644–657 (2007)CrossRefGoogle Scholar
  15. 15.
    Yang, J.-S., Tang, S.-M., Chang, J.-M., Wang, Y.-L.: Parallel construction of independent spanning trees on hypercubes. Parallel Computing 33, 73–79 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yang, J.-S., Chang, J.-M., Tang, S.-M., Wang, Y.-L.: On the independent spanning trees of recursive circulant graphs G(cd m,d) with d > 2. Theoretical Computer Science 410, 2001–2010 (2009)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Yang, J.-S., Chang, J.-M., Tang, S.-M., Wang, Y.-L.: Constructing multiple independent spanning trees on recursive circulant graphs G(2m,2). International Journal of Foundations of Computer Science 21, 73–90 (2010)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Yang, J.-S., Chang, J.-M., Chan, H.-C.: Broadcasting Secure Messages via Optimal Independent Spanning Trees in Folded Hypercubes. Discrete Applied Mathematics 159, 1254–1263 (2011)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Zehavi, A., Itai, A.: Three tree-paths. Journal of Graph Theory 13, 175–188 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shyue-Ming Tang
    • 1
  1. 1.Fu Hsing Kang SchoolNational Defense UniversityTaipeiTaiwan, ROC

Personalised recommendations