Advertisement

An Upper Bound of the Rainbow Connection Number in RTCC Pyramids

  • Fu-Hsing Wang
  • Ze-Jian Wu
  • Yann-Jong Hwang
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 20)

Abstract

Rainbow connection number of a connected graph G is the minimum number of colors needed to color the edges of G, so that every pair of vertices is connected by at least one path whose edges have distinct colors. In this paper, we propose an upper bound to the size of the rainbow connection number in Recursive Transpose-Connected 4-Cycles (RTCC) pyramids.

Keywords

Graph theory rainbow connection number rainbow coloring RTCC pyramids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahadi, A., Dehghan, A.: On Rainbow Connection of Strongly Regular Graphs. Arxiv preprint arXiv:1001.3413v1 [math.CO] (2010)Google Scholar
  2. 2.
    Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Ramaswamy, A.: Rainbow Connection Number and Radius. Arxiv preprint arXiv:1011.0620v1 [math.CO] (2010)Google Scholar
  3. 3.
    Caro, Y., Lev, A., Roditty, Y., Tuza, Z., Yuster, R.: On Rainbow Connection. The Electronic Journal of Combinatorics 15, #R57 (2008)MathSciNetGoogle Scholar
  4. 4.
    Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and Algorithms for Rainbow Connection. Journal of Combinatorial Optimization 21(3), 330–347 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow Connection in Graphs. Mathematica Bohemica 133(1), 85–98 (2008)MathSciNetMATHGoogle Scholar
  6. 6.
    Ericksen, A.: A Matter of Security. Graduating Engineer & Computer Careers, 24–28 (2007)Google Scholar
  7. 7.
    Kourdy, R., Rad, M.R.N.: RTCC-Pyramid-NOC: Scalable, Regular and Symmetric Network-on-chip Topology. The Journal of Computing 4, 58–64 (2012)Google Scholar
  8. 8.
    Krivelevich, M., Yuster, R.: The Rainbow Connection of a Graph is (at most) Reciprocal to Its Minimum Degree. Journal of Graph Theory 63(3), 185–191 (2009)MathSciNetGoogle Scholar
  9. 9.
    Li, X., Shi, Y.: Rainbow Connection in 3-connected Graphs. Arxiv preprint arXiv:1010.6131v1 [math.CO] (2010)Google Scholar
  10. 10.
    Li, X., Sun, Y.: Rainbow Connection of Graphs–A Survay, arXiv:1101.5747v1 [math.CO] (2011)Google Scholar
  11. 11.
    Razavi, S., Sarbazi-Azad, H.: The RTCC Pyramid: Routing and Topological Properties. Information Sciences 180, 2328–2339 (2010)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Wang, F.H., Sung, G.S.: Rainbow Connection Number in Triangular Pyramids. In: 29th Workshop on Combinatorial Mathematics and Computation Theory, Taipei, Taiwan (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Information ManagementChinese Culture UniversityTaipeiTaiwan, R.O.C.

Personalised recommendations