Advertisement

Maximum Likelihood DOA Estimation with Sensor Position Perturbation Using Particle Swarm Optimization

  • Jhih-Chung Chang
  • Chia-Yi Chen
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 20)

Abstract

In this paper, we consider the problem of direction-of-arrival (DOA) estimation for code-division multiple access (CDMA) signals in the presence of sensor position errors. For array calibration with sensor position errors, the estimation of the source directions and unknown array parameters is essential. The cost function is an extension of the maximum likelihood (ML) criteria that was originally developed for DOA estimation with a perfectly calibrated array. It is shown that the ML function is a complicated nonlinear multimodal function over a high-dimensional problem space. A modified particle swarm optimization (PSO) is proposed to compute the ML functions and find the global minimum cost function for array calibration. This proposed method has no requirement for calibration sources while the sensor position errors as well as the DOA of the incident signals can be estimated at the same time. Simulation results show that the proposed estimator has better performance over other popular methods.

Keywords

PSO DOA CDMA ML 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caffery, J.J., Stuber, G.L.: Overview of radiolocation in CDMA cellular networks. IEEE Communications Magazine 36(4), 38–45 (1998)CrossRefGoogle Scholar
  2. 2.
    Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas and Propagation 34(3), 276–280 (1986)CrossRefGoogle Scholar
  3. 3.
    Chiang, C.T., Chang, A.C.: DOA estimation in the asynchronous DS-CDMA system. IEEE Trans. Antennas and Propagation 51(1), 40–47 (2003)CrossRefGoogle Scholar
  4. 4.
    Swindlehurst, A.L., Kailath, T.: A performance analysis of subspace-based methods in the presence of model errors-Part I: The MUSIC algorithm. IEEE Trans. Signal Process. 40(7), 1758–1774 (1992)MATHCrossRefGoogle Scholar
  5. 5.
    Ng, B.C., Samson See, C.M.: Sensor-array calibration using a maximum-likelihood approach. IEEE Trans. Antennas Propagation 44(6), 827–835 (1996)CrossRefGoogle Scholar
  6. 6.
    Hong, J.S.: Genetic approach to bearing estimation with sensor location uncertainties. Electronic Letters 29, 2013–2014 (1993)CrossRefGoogle Scholar
  7. 7.
    Zhang, M., Zhu, Z.D.: Array shape calibration using sources in known locations. In: Proc. of the IEEE National Aerospace and Electronics Conference, NAECO, pp. 67–69 (1993)Google Scholar
  8. 8.
    Weiss, A.J., Friedlander, B.: Array shape calibration using eigenstructure methods. Signal Processing 22(3), 251–258 (1991)CrossRefGoogle Scholar
  9. 9.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Path, Australia, pp. 1942–1948. IEEE Service Center, Piscataway (1995)Google Scholar
  10. 10.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, pp. 69–73 (1998)Google Scholar
  11. 11.
    Shi, Y., Eberhart, R.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proc. of the Congress on Evolutionary Computation, Piscataway, vol. 1, pp. 84–88 (2000)Google Scholar
  12. 12.
    Liao, B., Liao, G., Wen, J.: Array calibration with sensor position errors using particle swarm optimization algorithm. In: 2009 IET International Radar Conference, pp. 1–3 (2009)Google Scholar
  13. 13.
    Li, M., Lu, Y.: Maximum likelihood DOA estimation in unknown colored noise fields. IEEE Trans. Aerospace and Electronic Systems 44(3), 1079–1090 (2008)CrossRefGoogle Scholar
  14. 14.
    Li, M., Lu, Y.: Source bearing and steering-vector estimation using partially calibrated arrays. IEEE Trans. Aerospace and Electronic Systems 45(4), 1361–1372 (2009)CrossRefGoogle Scholar
  15. 15.
    Chang, J.C.: DOA estimation for local scattered CDMA signals by particle swarm optimization. Sensors 12, 3228–3242 (2012)CrossRefGoogle Scholar
  16. 16.
    Ziskind, I., Wax, M.: Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoustics, Speech and Signal Processing 36(10), 1553–1560 (1988)MATHCrossRefGoogle Scholar
  17. 17.
    Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proc. of the Congress on Evolutionary Computation, vol. 3, pp. 1945–1950 (1999)Google Scholar
  18. 18.
    Haykin, S.: Communication Systems, 4th edn. John Wiley & Sons, New York (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Information TechnologyLing Tung UniversityTaichungTaiwan, ROC
  2. 2.Institute of Applied Information TechnologyLing Tung UniversityTaichungTaiwan, ROC

Personalised recommendations