Advertisement

Characterizing and Recognizing Probe Block Graphs

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 20)

Abstract

Block graphs are graphs in which every block (biconnected component) is a clique. A graph G = (V,E) is said to be an (unpartitioned) probe block graph if there exists an independent set ℕ ⊆ V and some set \(E' \subseteq \binom{\mathbb{N}}{2}\) such that the graph G′ = (V,E ∪ E′) is a block graph; if an independent set ℕ is given, G is called a partitioned block graph. In this note we give good characterizations for probe block graphs, in both unpartitioned and partitioned cases. As a result, partitioned and unpartitioned probe block graphs can be recognized in linear time.

Keywords

Probe graph block graph probe block graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayer, D., Le, V.B., de Ridder, E.: Probe Threshold Graphs and Probe Trivially Perfect Graphs. Theoretical Computer Science 410, 4812–4822 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (1999)Google Scholar
  3. 3.
    Chandler, D.B., Chang, M.-S., Kloks, T., Peng, S.-L.: Probe Graphs (2009) (manuscript)Google Scholar
  4. 4.
    Chang, M.-S., Hung, L.-J., Kloks, T., Peng, S.-L.: Block-graph Width. Theoretical Computer Science 412, 2496–2502 (2011)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cohen, E., Golumbic, M.C., Lipshteyn, M., Stern, M.: On the Bi-enhancement of Chordal-bipartite Probe Graphs. Information Processing Letters 110, 193–197 (2010)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980); Annals of Discrete Math., 2nd edn, vol. 57. Elsevier, Amsterdam (2004)MATHGoogle Scholar
  7. 7.
    Golumbic, M.C., Kaplan, H., Shamir, R.: Graph Sandwich Problems. Journal of Algorithms 19, 449–473 (1995)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Golumbic, M.C., Lipshteyn, M.: Chordal Probe Graphs. Discrete Applied Mathematics 143, 221–237 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Le, V.B.: Two Characterizations of Chain Partitioned Probe Graphs. Annals of Operations Research 188, 279–283 (2011)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Zhang, P.: Probe Interval Graphs and Their Application to Physical Mapping of DNA (1994) (manuscript)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für InformatikUniversität RostockRostockGermany
  2. 2.Department of Computer Science and Information EngineeringNational Dong Hwa University, ShoufengHualienTaiwan

Personalised recommendations