Skip to main content

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 20))

  • 1991 Accesses

Abstract

In this paper, we study the problem Min-Max 2-Cluster Editing which asks for a modification of a given graph into two maximal cliques by inserting or deleting edges such that the maximum number k of the editing edges incident to any vertex is minimized. We show the NP-hardness of the problem and present a polynomial-time algorithm when k < n/4, in which n is number of vertices. In addition, we design a 2-approximation algorithm and a branching algorithm for finding an optimal solution. By experiments on random graphs, we show that the exact algorithm is much more efficient than a trivial one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Ranking and clustering. J. ACM 55(5), 1–27 (2008)

    Article  MathSciNet  Google Scholar 

  2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial optimization problems and their approximability properties. Springer (1999)

    Google Scholar 

  3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning, Special Issue on Clustering 56, 89–113 (2004)

    MATH  Google Scholar 

  4. Böcker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster editing. Information Processing Letters 111(14), 717–721 (2011)

    Article  MathSciNet  Google Scholar 

  5. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truss, A.: Going weighted: Parameterized algorithm for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)

    Article  MATH  Google Scholar 

  6. Bonizzoni, P., Della Vedova, G., Dondi, R.: A ptas for the minimum consensus clustering problem with a fixed number of clusters. In: Proc. Eleventh Italian Conference on Theoretical Computer Science (2009)

    Google Scholar 

  7. Bonizzoni, P., Della Vedova, G., Dondi, R., Jiang, T.: On the approximation of correlation clustering and consensus clustering. Journal of Computer and System Sciences 74(5), 671–696 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, J., Meng, J.: A 2k Kernel for the Cluster Editing Problem. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 459–468. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Damaschke, P.: Bounded-Degree Techniques Accelerate Some Parameterized Graph Algorithms. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 98–109. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Damaschke, P.: Fixed-parameter enumerability of cluster editing and related problems. Theory Computing Syst. 46, 261–283 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. Discrete Optimization 8(1), 2–17 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Filkov, V., Skiena, S.: Integrating microarray data by consensus clustering. International Journal on Artificial Intelligence Tools 13(4), 863–880 (2004)

    Article  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, NewYork (1979)

    MATH  Google Scholar 

  14. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory Comput. 2, 249–266 (2006)

    Article  MathSciNet  Google Scholar 

  15. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Fixedparameter algorithms for clique generation. Theory Computing Syst. 38, 373–392 (2005)

    Article  MATH  Google Scholar 

  16. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39, 321–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410, 718–726 (2009)

    Article  MATH  Google Scholar 

  18. Harary, F.: On the notion of balance of a signed graph. Michigan Mathematical Journal 2(2), 143–146 (1953)

    Article  MathSciNet  Google Scholar 

  19. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory of Computing Systems 47(1), 196–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Micali, S., Vazirani, V.V.: An \(O(\sqrt{|V|}|E|)\) algorithm for finding maximum matching in general graphs. In: FOCS, pp. 17–27 (1980)

    Google Scholar 

  21. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discr. Appl. Math. 144(1-2), 173–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Talmaciu, M., Nechita, E.: Recognition algorithm for diamond-free graphs. Informatica 18(3), 457–462 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, Cambridge (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, LH., Chang, MS., Wang, CC., Wu, B.Y. (2013). On the Min-Max 2-Cluster Editing Problem. In: Chang, RS., Jain, L., Peng, SL. (eds) Advances in Intelligent Systems and Applications - Volume 1. Smart Innovation, Systems and Technologies, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35452-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35452-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35451-9

  • Online ISBN: 978-3-642-35452-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics