Internally Disjoint Paths in a Variant of the Hypercube

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 20)

Abstract

The hypercube is one of the most popular interconnection networks for parallel computer/communication system. The exchanged hypercube, which is a variant of the hypercube, maintains several desirable properties of the hypercube such as low diameter, bipancyclicity, and super connectivity. In this paper, we give internally disjoint paths for parallel routing in exchanged hypercubes and show the wide diameter of exchanged hypercubes.

Keywords

hypercube exchanged hypercube disjoint paths diameter wide diameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, C.P., Sung, T.Y., Hsu, L.H.: Edge congestion and topological properties of crossed cubes. IEEE Trans. on Parallel and Distributed Systems 11(1), 64–80 (2000)CrossRefGoogle Scholar
  2. 2.
    Hsu, L.H., Lin, C.K.: Graph Theory and Interconnection Networks. CRC Press (2008)Google Scholar
  3. 3.
    Latifi, S.: Combinatorial analysis of fault-diameter of the n-cube. IEEE Trans. on Computers 42(1), 27–33 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays · Trees · Hypercubes. Morgan Kaufmann, San Mateo (1992)MATHGoogle Scholar
  5. 5.
    Loh, P.K.K., Hsu, W.J., Pan, Y.: The exchanged hypercube. IEEE Trans. on Parallel and Distributed Systems 16(9), 866–874 (2005)CrossRefGoogle Scholar
  6. 6.
    Ma, M.: The connectivity of exchanged hypercubes. Discrete Mathematics Algorithms and Applications 2(2), 213–220 (2010)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ma, M., Liu, B.: Cycles embedding in exchanged hypercubes. Information Processing Letters 110(2), 71–76 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ma, M., Zhu, L.: The super connectivity of exchanged hypercubes. Information Processing Letters 111(8), 360–364 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Saad, Y., Schultz, M.H.: Topological properties of hypercubes. IEEE Trans. on Computers 37(7), 867–872 (1988)CrossRefGoogle Scholar
  10. 10.
    Xu, J.M.: Topological Structure and Analysis of Interconnection Networks. Kluwer Academic Publishers, Dordrecht (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tsung-Han Tsai
    • 1
  • Y-Chuang Chen
    • 2
  • Jimmy J. M. Tan
    • 1
  1. 1.Department of Computer ScienceNational Chiao Tung UniversityHsinchuTaiwan R.O.C
  2. 2.Department of Information ManagementMinghsin University of Science, and TechnologyXinfeng HsinchuTaiwan R.O.C

Personalised recommendations