Advertisement

Consequences of Starbursts for the Interstellar and Intergalactic Medium

  • Dieter Breitschwerdt
  • Miguel de Avillez
  • Ernst Dorfi
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 34)

Abstract

Star formation in general, and starbursts in particular, drive the evolution of galaxies. To understand the process of galactic matter cycle quantitatively, it is absolutely necessary to follow the evolution of the components of the interstellar medium, such as gas, magnetic fields, cosmic rays in detail over sufficiently long time scales. Due to the non-linearity of the interactions between the various components, and the turbulent nature of the plasma, high resolution numerical simulations offer the best strategy to further our understanding. The results of our numerical studies can be summarized as follows: (i) Supernova explosions are the most important energy input sources in the ISM and lead to a high level of turbulence in the plasma, coupling structures on all scales, (ii) more than half of the disk mass resides in classically thermally unstable temperature regimes, (iii) turbulent mixing is the dominant energy transport process over a wide range of scales, (iv) proportionality between magnetic field and density is generally weak, except for the densest regions, (v) magnetic fields, even if they are parallel to the galactic disk, cannot prevent outflow into the halo, (vi) the ionization structure of the plasma depends on its thermal history, and is in general not in collisional ionization equilibrium, (vii) the cooling function varies in space and time, (viii) X-rays can be emitted even at plasma temperatures of the order of 104K due to delayed recombination, both in the disk and the halo, (ix) cosmic rays can help driving a galactic wind, (x) cosmic rays can be accelerated to high energies beyond 1015eV (the “knee”) in long lived shocks propagating into the galactic halo, because of time-dependent star formation.

Keywords

Star Formation Flux Tube Stellar Wind Star Formation Rate Stellar Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

DB thanks the organizers for their invitation, and Olaf Reimer for many useful comments that helped to improve the manuscript.

References

  1. 1.
    Abdo, A.A., and the Fermi/LAT Collaboration (2010), ApJ, 709, L152Google Scholar
  2. 2.
    Acero, F., and the H.E.S.S. Collaboration (2009), Science, 326, 1080Google Scholar
  3. 3.
    Bauer, M., Pietsch, W., Trinchieri, G., Breitschwerdt, D., Ehle, M., Freyberg, M. J., Read, A. M. (2008), A&A, 489, 1029ADSCrossRefGoogle Scholar
  4. 4.
    Bell, A.R., Lucek, S.G. (2001), MNRAS, 321, 433ADSCrossRefGoogle Scholar
  5. 5.
    Berezhko, E.G., Yelshin, V.K., Ksenofontov; L.T. (1994), APh, 2, 215Google Scholar
  6. 6.
    Boldyrev, S. (2005), ApJ, 626, L37ADSCrossRefGoogle Scholar
  7. 7.
    Breitschwerdt, D. (2003), Rev. Mex. Astron. Astrophys., 15, 311ADSGoogle Scholar
  8. 8.
    Breitschwerdt, D., Dogiel, V.A., Völk, H.J. (2002), A&A 385, 216ADSCrossRefGoogle Scholar
  9. 9.
    Breitschwerdt, D., McKenzie, J.F., Völk, H.J. (1991), A&A 245, 79ADSGoogle Scholar
  10. 10.
    Breitschwerdt, D., Schmutzler, T., (1999), A&A, 347, 650ADSGoogle Scholar
  11. 11.
    Breitschwerdt, D., Schmutzler, T. (1994), Nature 371, 774ADSCrossRefGoogle Scholar
  12. 12.
    Cen, R., Ostriker, J.P. (1999), ApJ, 514, 1ADSCrossRefGoogle Scholar
  13. 13.
    Cesarsky, CJ., Lagage, P.O. (1983), A&A, 125, 249ADSzbMATHGoogle Scholar
  14. 14.
    Chandrasekhar, S., Fermi, E. (1953), ApJ, 118, 113MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Dalgarno, A., McCray, R. A. (1972), ARA&A, 10, 375ADSCrossRefGoogle Scholar
  16. 16.
    de Avillez, M.A. (2000), MNRAS, 315, 479ADSCrossRefGoogle Scholar
  17. 17.
    de Avillez, M.A., Ashgekar, A., Breitschwerdt, D. Spitoni, E. (2012), MNRAS, 423, L107ADSGoogle Scholar
  18. 18.
    de Avillez, M.A., Breitschwerdt, D. (2012), ApJ, 756, L3ADSCrossRefGoogle Scholar
  19. 19.
    de Avillez, M.A., Breitschwerdt, D. (2007), ApJ, 665, L35ADSCrossRefGoogle Scholar
  20. 20.
    de Avillez, M.A., Breitschwerdt, D. (2005), A&A, 436, 585 (AB05)Google Scholar
  21. 21.
    de Avillez, M.A., Breitschwerdt, D. (2004), A&A, 425, 899 (AB04)Google Scholar
  22. 22.
    Dickey J. M., & Lockman F. J. (1990), ARA&A 28, 215ADSCrossRefGoogle Scholar
  23. 23.
    Dorfi, E.A., Breitschwerdt D. (2012), A&A, 540, 77 (DB12)Google Scholar
  24. 24.
    Drury, L. O’C. (1983), Rep. Prog. Phys., 46, 973Google Scholar
  25. 25.
    Elmegreen, B. G., Scalo, J. (2004), ARA&A, 42, 211ADSCrossRefGoogle Scholar
  26. 26.
    Elsässer, W. M. (1950), Phys. Rev., 79, 183ADSCrossRefGoogle Scholar
  27. 27.
    Ferrière, K. M. (2001), Rev. Mod. Phys., 73, 1031ADSCrossRefGoogle Scholar
  28. 28.
    Ferrière, K. M. (1998), ApJ, 503, 700ADSCrossRefGoogle Scholar
  29. 29.
    Freeman, K. C. (1987), ARA&A, 25, 603ADSCrossRefGoogle Scholar
  30. 30.
    Fukazawa, Y., Kawano, N., Kawashima, K. (2004), ApJ, 606, L109ADSCrossRefGoogle Scholar
  31. 31.
    Fukugita, M., Peebles, P.E.J. (2004), ApJ, 616, 643ADSCrossRefGoogle Scholar
  32. 32.
    Goldreich, P., Sridhar, S. (1995), ApJ, 438, 763ADSCrossRefGoogle Scholar
  33. 33.
    Greisen, K., (1966), Phys. Rev. Letters, 16, 748ADSCrossRefGoogle Scholar
  34. 34.
    Gunn, J.P., Gott, J.R.. (1972), ApJ, 176, 1ADSCrossRefGoogle Scholar
  35. 35.
    Heesen, V., Beck, R., Krause, M., Dettmar, R.J. (2009), A&A, 494, 563ADSCrossRefGoogle Scholar
  36. 36.
    Heiles, C., Troland, T. H. (2003), ApJ, 586, 1067ADSCrossRefGoogle Scholar
  37. 37.
    Hillas, A.M. (1984), ARA&A, 22, 425ADSCrossRefGoogle Scholar
  38. 38.
    Iroshnikov, P.S. (1963), AZh, 40, 742 (1964, Soviet Astron., 7, 566)Google Scholar
  39. 39.
    Jokipii, R., Morfil, G.E. (1985), ApJ, 290, L1ADSCrossRefGoogle Scholar
  40. 40.
    Joung, M.K.R., MacLow, M.M. (2006), ApJ, 653, 1266ADSCrossRefGoogle Scholar
  41. 41.
    Kafatos, M. (1973), ApJ, 182, 433ADSCrossRefGoogle Scholar
  42. 42.
    Kennicut, R.C. (1998), ARA&A, 36, 189ADSCrossRefGoogle Scholar
  43. 43.
    Klypin, A., Zhao, H., Somerville, R. (2002), ApJ, 573, 597ADSCrossRefGoogle Scholar
  44. 44.
    Kolmogorov, A. N. (1941), Akad. Nauk SSSR Dokl., 30, 299ADSGoogle Scholar
  45. 45.
    Korpi M. J., Brandenburg A., Shukurov A., Tuominen I., Nordlund A. (1999), ApJL, 514, 99CrossRefGoogle Scholar
  46. 46.
    Kraichnan, R.H. (1965), Phys. Fluids, 8, 1385MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Kronberg, P.P., Biermann, P., Schwab, F.R. (1981), ApJ, 246, 751ADSCrossRefGoogle Scholar
  48. 48.
    Kulsrud, R.M., Pearce, W.D. (1969), ApJ, 156, 445ADSCrossRefGoogle Scholar
  49. 49.
    Landau, L.D., Lifshitz, E.M. (1959), Fluid Mechanics, Vol. 6, Pergamon PressGoogle Scholar
  50. 50.
    Larson, R.B. (1981), MNRAS, 194, 809ADSGoogle Scholar
  51. 51.
    Lerche, I. (1967), ApJ, 147, 689ADSCrossRefGoogle Scholar
  52. 52.
    Lilly, S.J., Le Fevre, O., Hammer, F., Crampton, D. (1996), ApJ, 460, L1ADSCrossRefGoogle Scholar
  53. 53.
    Lucek, S.G., Bell, A.R. (2000), MNRAS, 314, 65ADSCrossRefGoogle Scholar
  54. 54.
    Mac Low, M.-M., Klessen, R. S. (2004), Rev. Mod. Phys. 76, 125ADSCrossRefGoogle Scholar
  55. 55.
    Madau, P., Ferguson, H.C., Dickoinson, M.E. et al. (1996), MNRAS, 333, L65Google Scholar
  56. 56.
    McKee, C. F., Ostriker, J. P. (1977), ApJ, 218, 148 (MO77)Google Scholar
  57. 57.
    McKenzie, J. F., Völk, H.J. (1982), A&A, 116, 191ADSzbMATHGoogle Scholar
  58. 58.
    Ptuskin, V.S., Zirakashvili, V.N., Völk, H.J., Breitschwerdt, D. (1997), A&A 371, 774Google Scholar
  59. 59.
    Reynolds R. J. (1987), ApJ, 323, 118ADSCrossRefGoogle Scholar
  60. 60.
    Schindler, S., Kapferer, W., Domainko, W., Mair, M., van Kampen, E., Kronberger, T., Kimeswenger, S., Ruffert, M., Mangete, O., Breitschwerdt, D. (2005), A&A, 453, L25ADSCrossRefGoogle Scholar
  61. 61.
    Schmidt, M. (1959), ApJ, 129, 243ADSCrossRefGoogle Scholar
  62. 62.
    Shapiro, P.R., Moore, R.T. (1976), ApJ, 207, 460ADSCrossRefGoogle Scholar
  63. 63.
    Silk, J. (2003), MNRAS, 343, 249ADSCrossRefGoogle Scholar
  64. 64.
    Uchiyama, Y., Aharonian, F.A., Tanaka, T., Takahashi, T., Maeda, Y. (2007), Nature, 449, 576ADSCrossRefGoogle Scholar
  65. 65.
    Völk, H.J., Biermann, P.L. (1988), ApJ, 249Google Scholar
  66. 66.
    von Weizsäcker, C.F. (1951), ApJ 114, 165CrossRefGoogle Scholar
  67. 67.
    Wolfire, M. G., McKee, C. F., Hollenbach, D., Tielens, A. G. G. M., & Bakes, E. L. O. (1995), ApJ, 443, 152ADSCrossRefGoogle Scholar
  68. 68.
    Zatsepin, G.T., Kuz’min, V.A. (1966), JETPL, 4, 78ADSGoogle Scholar
  69. 69.
    Zirakashvili, Breitschwerdt, D., V.N., Ptuskin, V.S., Völk, H.J. (1996), A&A 311, 113Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dieter Breitschwerdt
    • 1
  • Miguel de Avillez
    • 2
  • Ernst Dorfi
    • 3
  1. 1.Zentrum für Astronomie und Astrophysik, TU BerlinBerlinGermany
  2. 2.Department of MathematicsUniversity of ÉvoraÉvoraPortugal
  3. 3.Institut für AstronomieUniversität WienWienAustria

Personalised recommendations