Advertisement

The Initial Conditions of Star Formation: Cosmic Rays as the Fundamental Regulators

  • Padelis P. Papadopoulos
  • Wing-Fai Thi
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 34)

Abstract

Cosmic rays (CRs) control the thermal, ionization and chemical state of the dense H2 gas regions that otherwise remain shielded from far-UV and optical stellar radiation propagating through the dusty ISM of galaxies. It is in such CR-dominated regions (CRDRs) rather than Photon-dominated regions (PDRs) of H2 clouds where the star formation initial conditions are set, making CRs the ultimate star-formation feedback factor in galaxies, able to operate even in their most deeply dust-enshrouded environments. CR-controlled star formation initial conditions naturally set the stage for a near-invariant stellar Initial Mass Function (IMF) in galaxies as long as their average CR energy density UCR permeating their molecular ISM remains within a factor of ∼ 10 of its Galactic value. Nevertheless, in the extreme environments of the compact starbursts found in merging galaxies, where UCR ∼ (few) × 103 UCR,Gal, CRs dramatically alter the initial conditions of star formation. In the resulting extreme CRDRs H2 cloud fragmentation will produce far fewer low mass ( < 8 M) stars, yielding a top-heavy stellar IMF. This will be a generic feature of CR-controlled star-formation initial conditions, lending a physical base for a bimodal IMF during galaxy formation, with a top-heavy one for compact merger-induced starbursts, and an ordinary IMF preserved for star formation in isolated gas-rich disks. In this scheme the integrated galactic IMFs (IGIMF) are expected to be strong functions of the star formation history of galaxies. Finally the large, CR-induced, ionization fractions expected for (far-UV)-shielded H2 gas in the CRDRs of compact starbursts will lengthen the ambipolar diffusion (AD) timescales so much as to render the alternative AD-regulated rather (Jeans mass)-driven star formation scenario as utterly unrealistic for the ISM in such galaxies.

Keywords

Star Formation Star Formation Rate Ambipolar Diffusion Initial Mass Function Reconnection Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Padelis P. Papadopoulos would like to warmly thank the organizers of the conference in Sant Cugat for an exciting week where much was learned and new vistas for both high energy and the so-called low energy Astrophysics came into view. This project was also funded by the John Latsis Public Benefit Foundation. The sole responsibility for the content lies with its authors.

References

  1. 1.
    Hollenbach D. J., & Tielens A. G. G. M. Reviews of Modern Physics Vol. 17, No1, January 1999Google Scholar
  2. 2.
    Wolfire M. G., McKee C. F., Hollenbach D., Tielens, A. G. G. M. 2003, Astrophysical Journal, 587, 278ADSCrossRefGoogle Scholar
  3. 3.
    Tielens A. G. G. M. & Hollenbach D. J. 1985a Astrophysical Journal, 291, 722ADSCrossRefGoogle Scholar
  4. 4.
    Tielens A. G. G. M. & Hollenbach D. J. 1985b Astrophysical Journal, 291, 747ADSCrossRefGoogle Scholar
  5. 5.
    Gao Yu, & Solomon P. M. 2004, Astrophysical Journal Supplement, 152, 63Google Scholar
  6. 6.
    Solomon P. M., Downes D., & Radford S. J. E 1992, Astrophysical Journal Letters 387, 55Google Scholar
  7. 7.
    Padoan P., & Nordlund A. 2002, Astrophysical Journal, 576, 870ADSCrossRefGoogle Scholar
  8. 8.
    Pan L., & Padoan P. 2009, Astrophysical Journal, 692, 594ADSCrossRefGoogle Scholar
  9. 9.
    Pelupessy F. I., Papadopoulos P. P., & van der Werf P. P. 2006, Astrophsyical Journal, 645, 1024ADSCrossRefGoogle Scholar
  10. 10.
    Bergin, E. A. & Tafalla, M. 2007, Annual Reviews of Astronomy & Astrophysics, 45, 339ADSCrossRefGoogle Scholar
  11. 11.
    Pineda, J. L. & Bensch, F. 2007, Astronomy & Astrophysics, 470, 615ADSCrossRefGoogle Scholar
  12. 12.
    Pineda, J. E., Goodman, A. A, Arce, H. E. et al. 2010, Astrophysical Journal Letters, 712, L116ADSCrossRefGoogle Scholar
  13. 13.
    Goldsmith, P. F., & Langer, W. D. 1978, Astrophysical Journal, 222, 881ADSCrossRefGoogle Scholar
  14. 14.
    Ossenkopf, V. 2002, Astronomy & Astrophysics, 391. 295Google Scholar
  15. 15.
    Goldsmith, P. F. 2001, Astrophysical Journal, 557, 736ADSCrossRefGoogle Scholar
  16. 16.
    Liseau, R. et al. 1999, Astronomy & Astrophysics 1999, 344, 342Google Scholar
  17. 17.
    Burke, J. R., & Hollenbach, D. J. 1983, Astrophysical Journal, 265, 223ADSCrossRefGoogle Scholar
  18. 18.
    Groenewegen, M. A. T. 1994, Astronomy & Astrophysics, 290, 531ADSGoogle Scholar
  19. 19.
    Papadopoulos, P. P., Thi. W.-F., Miniati, F., & Viti S. 2011, Monthly Notices of the Royal Astronomical Society, 414, 1705Google Scholar
  20. 20.
    McKee, C. F. 1989, Astrophysical Journal, 1989, Astrophysical Journal, 345, 342CrossRefGoogle Scholar
  21. 21.
    Mouschovias, T. Ch., & Spitzer L. Jr, 1976, Astrophsyical Journal, 210, 326ADSCrossRefGoogle Scholar
  22. 22.
    Larson, R. B. 2005, Monthly Notices of the Royal Astronomical Society, 359, 211ADSCrossRefGoogle Scholar
  23. 23.
    Elmegreen B. G., Klessen R. S., & Wilson C. D. 2008, Astrophysical Journal, 681, 365ADSCrossRefGoogle Scholar
  24. 24.
    Sakamoto, K. et al. 2008, Astrophysical Journal, 684, 957ADSCrossRefGoogle Scholar
  25. 25.
    Downes D., & Solomon P. M. 1998, Astrophysical Journal, 507, 615ADSCrossRefGoogle Scholar
  26. 26.
    Greve T. R., Papadopoulos P. P., Gao Y., & Radford S. J. E. 2009, Astrophysical Journal, 692, 1432ADSCrossRefGoogle Scholar
  27. 27.
    Papadopoulos P. P., van der Werf P. P., Xilouris E. M., Isaak K. G., Gao Y., & Muehle S. 2012, Monthly Notices of the Royal Astronomical Society, (in press, arXiv:1109.4176)Google Scholar
  28. 28.
    Rangwala N. et al. 2012, Astrophysical Journal, 743, 94ADSCrossRefGoogle Scholar
  29. 29.
    Papadopoulos P. P., 2010, Astrophysical Journal, 720, 226ADSCrossRefGoogle Scholar
  30. 30.
    Yusef-Zadeh F., Wardle M., Roy S. 2007, Astrophysical Journal Letters 665, L123ADSCrossRefGoogle Scholar
  31. 31.
    Bradford C. M., Nikola T., & Stacey G. J. 2003, Astrophysical Journal 586, 891ADSCrossRefGoogle Scholar
  32. 32.
    Hailey-Dunsheath S., Nikola T., Stacey G. J. et al. 2008, Astrophysical Journal Letters, 689, L109ADSCrossRefGoogle Scholar
  33. 33.
    Klessen R. S. 2004, Astrophysics and Space Science, 292, Issue 1, p. 215Google Scholar
  34. 34.
    Elmegreen B. G. 1989, Astrophysical Journal, 338, 178ADSCrossRefGoogle Scholar
  35. 35.
    Lazarian A. 2011, Nonlin. Processes Geophys. (in press, arXiv:1111.0694)Google Scholar
  36. 36.
    Lazarian A. Esquivel A., & Crutcher R. 2012, Astrophysical Journal (arXiv:1206.4698)Google Scholar
  37. 37.
    Li Y., Klessen R. S., & McLow M.-M. 2003, Astrophysical Journal, 592, 975ADSCrossRefGoogle Scholar
  38. 38.
    Jappsen A.-K., Klessen R. S., Larson R. B., Li Y., McLow M.-M. 2005, Astronomy & Astrophysics, 435 611ADSCrossRefGoogle Scholar
  39. 39.
    Klessen R. S., Spaans M. & Jappsen A.-K. 2007, Montly Notices of the Royal Astronomical Society, 374, L29ADSCrossRefGoogle Scholar
  40. 40.
    Hocuk S., & Spaans M. 2011, Astronomy & Astrophysics, 536, 41ADSCrossRefGoogle Scholar
  41. 41.
    Baugh C. M. et al. 2005, Monthly Notices of the Royal Astronomical Society, 356, 1191ADSCrossRefGoogle Scholar
  42. 42.
    Koeppen J., Weidner C., & Kroupa P. 2007, Monthly Notices of the Royal Astronomical Society, 375, 673ADSCrossRefGoogle Scholar
  43. 43.
    Meijerink R., Spaans M., Loenen A. F., & van der Werf P. P. 2011, Astronomy & Astrophysics, 525, 119ADSCrossRefGoogle Scholar
  44. 44.
    Bayet E., Williams D. A., Hartquist T. W., & Viti S. 2011, Monthly Notices of the Royal Astronomical Society, 414, 1583ADSCrossRefGoogle Scholar
  45. 45.
    Acciari V. A. et al. 2009, Nature, 462, 770ADSCrossRefGoogle Scholar
  46. 46.
    Acero F. et al. 2009, Science, 326, 1080ADSCrossRefGoogle Scholar
  47. 47.
    Kroupa P. et al. 2012, in Stellar Systems and Galactic Structure, Vol. V. (in press, arXiv:1112.3340)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Max Planck Institute for RadioastronomyBonnGermany
  2. 2.UJF-Grenoble 1/CNRS-INSU, Institut de Plantologie et d’Astrophysique (IPAG) UMR 5274GrenobleFrance

Personalised recommendations