Nonthermal X-Rays from Low-Energy Cosmic Rays in the Arches Cluster Region

  • V. Tatischeff
  • A. Decourchelle
  • G. Maurin
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 34)


We have studied in detail the production of nonthermal line and continuum X-rays by interaction of accelerated electrons and ions with a neutral ambient gas, and have applied the resulting models to XMM-Newton observations of the X-ray emission emanating from the Arches cluster region near the Galactic center. The diffuse X-ray emission prominent in the 6.4keV Fe Kα line surrounding the very massive cluster is likely excited by low-energy cosmic ray ions produced in the ongoing supersonic collision between the star cluster and an adjacent molecular cloud. The nonthermal emission from this region probably offers at present the best available signature for a source of low-energy hadronic cosmic rays in the Galaxy.


Molecular Cloud Star Cluster Nonthermal Component Arch Cluster Total Wind Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Régis Terrier to several useful discussions. G. M. acknowledges financial support from CNES. This work uses observations performed with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA member states and the USA (NASA).


  1. 1.
    Capelli, R., Warwick, R. S., Cappelluti, N., Gillessen, S., Predehl, P., Porquet, D., & Czesla, S. 2011a, A&A, 525, L2ADSCrossRefGoogle Scholar
  2. 2.
    Capelli, R., Warwick, R. S., Porquet, D., Gillessen, S., & Predehl, P. 2011b, A&A, 530, A38ADSCrossRefGoogle Scholar
  3. 3.
    Dong, H., Wang, Q. D., Cotera, A., et al. 2011, MNRAS, 417, 114ADSCrossRefGoogle Scholar
  4. 4.
    Clarkson, W. I., Ghez, A. M., Morris, M. R., et al. 2012, ApJ, 751, 132ADSCrossRefGoogle Scholar
  5. 5.
    Figer, D. F., Najarro, F., Gilmore, D., et al. 2002, ApJ, 581, 258ADSCrossRefGoogle Scholar
  6. 6.
    Genzel, R., Schödel, R., Ott, T., et al. 2003, ApJ, 594, 812ADSCrossRefGoogle Scholar
  7. 7.
    Lang, C. C., Goss, W. M., & Morris, M. 2002, AJ, 124, 2677ADSCrossRefGoogle Scholar
  8. 8.
    Liermann, A., Hamann, W.-R., & Oskinova, L. M. 2009, A&A, 494, 1137ADSCrossRefGoogle Scholar
  9. 9.
    Ponti, G., Terrier, R., Goldwurm, A., Belanger, G., & Trap, G. 2010, ApJ, 714, 732ADSCrossRefGoogle Scholar
  10. 10.
    Rockefeller, G., Fryer, C. L., Melia, F., & Wang, Q. D. 2005, ApJ, 623, 171ADSCrossRefGoogle Scholar
  11. 11.
    Smith, R. K., Brickhouse, N. S., Liedahl, D. A., & Raymond, J. C. 2001, ApJ, 556, L91ADSCrossRefGoogle Scholar
  12. 12.
    Stolte, A., Ghez, A. M., Morris, M., et al. 2008, ApJ, 675, 1278ADSCrossRefGoogle Scholar
  13. 13.
    Tatischeff, V., Decourchelle, A., & Maurin, G. 2012, A&A, 546, A88ADSCrossRefGoogle Scholar
  14. 14.
    Terrier, R., Ponti, G., Bélanger, G., et al. 2010, ApJ, 719, 143ADSCrossRefGoogle Scholar
  15. 15.
    Tsujimoto, M., Hyodo, Y., & Koyama, K. 2007, PASJ, 59, 229Google Scholar
  16. 16.
    Wang, Q. D., Dong, H., Cotera, A., et al. 2010, MNRAS, 402, 895ADSCrossRefGoogle Scholar
  17. 17.
    Wang, Q. D., Dong, H., & Lang, C. 2006, MNRAS, 371, 38ADSCrossRefGoogle Scholar
  18. 18.
    Yusef-Zadeh, F., Muno, M., Wardle, M., & Lis, D. C. 2007, ApJ, 656, 847ADSCrossRefGoogle Scholar
  19. 19.
    Yusef-Zadeh, F., Hewitt, J. W., Wardle, M., et al. 2012, ApJ, 762, 33ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centre de Spectrométrie Nucléaire et de Spectrométrie de MasseIN2P3/CNRS and Univ Paris-SudOrsay CampusFrance
  2. 2.Service d’Astrophysique (SAp)/IRFU/DSM/CEA SaclayGif-sur-Yvette CedexFrance
  3. 3.Laboratoire AIMCEA-IRFU/CNRS/Univ Paris Diderot, CEA SaclayGif sur YvetteFrance
  4. 4.Laboratoire d’Annecy le Vieux de Physique des ParticulesUniv de Savoie, CNRSAnnecy-le-Vieux CedexFrance

Personalised recommendations