Skip to main content

Toward a Copula Theory for Multivariate Regular Variation

  • Conference paper
  • First Online:
Copulae in Mathematical and Quantitative Finance

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 213))

Abstract

Multivariate regular variation describes the relative decay rates of joint tail probabilities of a random vector with respect to tail probabilities of a norm of this random vector, and it is often used in studying heavy-tail phenomena observed in data analysis in various fields, such as finance and insurance. Multivariate regular variation can be analyzed in terms of the intensity measure or spectral measure but can also be studied by using the copula approach. In this paper, the basic ingredients of a measure-theoretic copula theory for multivariate regular variation are presented, and the method is based on extraction of scale-invariant extremal dependence from the intensity measure by standardizing its margins. Various examples as well as the advantages and disadvantages of the copula approach are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alink, S., Löwe, M., Wüthrich, M.V.: Diversification of aggregate dependent risks. Insur. Math. Econ. 35, 77–95 (2004)

    Article  MATH  Google Scholar 

  2. Balkema, G., Embrechts, P.: High Risk Scenarios and Extremes: A Geometric Approach. European Mathematical Society, Zürich (2007)

    Book  MATH  Google Scholar 

  3. Barbe, P., Fougères, A.L., Genest, C.: On the tail behavior of sums of dependent risks. ASTIN Bull. 36(2), 361–374 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basrak, B., Davis, R.A., Mikosch, T.: Regular variation of GARCH processes. Stoch. Proc. Appl. 99, 95–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bedford, T., Cooke, R.M.: Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intell. 32, 245–268 (2001)

    Article  MathSciNet  Google Scholar 

  6. Bedford, T., Cooke, R.M.: Vines: a new graphical model for dependent random variables. Ann. Stat. 30, 1031–1068 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of Extremes: Theory and Applications. Wiley, New York (2004)

    Book  Google Scholar 

  8. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  9. Chan, Y., Li, H.: Tail dependence for multivariate t-copulas and its monotonicity. Insur. Math. Econ. 42, 763–770 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Charpentier, A., Segers, J.: Tails of multivariate Archimedean copulas. J. Multivariate Anal. 100, 1521–1537 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coles, S.G., Tawn, J.A.: Modelling extreme multivariate events. J. R. Stat. Soc., Ser. B 53(2), 377–392 (1991)

    Google Scholar 

  12. de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer, New York (2006)

    MATH  Google Scholar 

  13. de Haan, L., Resnick, S.I.: Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 40, 317–337 (1977)

    Article  MATH  Google Scholar 

  14. de Haan, L., Resnick, S.I.: On regular variation of probability densities. Stoch. Process. Appl. 25, 83–95 (1987)

    Article  MATH  Google Scholar 

  15. Drees, H., Huang, X.: Best attainable rates of convergence for estimators of the stable tail dependence function. J. Multivariate Anal. 64, 25–47 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modeling Extremal Events for Insurance and Finance. Springer, New York (1997)

    Book  Google Scholar 

  17. Embrechts, P., Lambrigger, D.D., Wüthrich, M.V.: Multivariate extremes and the aggregation of dependent risks: examples and counterexamples. Extremes 12(2), 107–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Embrechts, P., Nešlehová, J., Wüthrich, M.V.: Additivity properties for value-at-risk under Archimedean dependence and heavy-tailedness. Insur. Math. Econ. 44(2), 164–169 (2009)

    Article  MATH  Google Scholar 

  19. Einmahl, J.H.J., de Haan, L., Huang, X.: Estimating a multidimensional extreme-value distribution. J. Multivariate Anal. 47(1), 35–47 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Einmahl, J.H.J., de Haan, L., Piterbarg, V.I.: Nonparametric estimation of the spectral measure of an extreme value distribution. Ann. Stat. 29(5), 1401–1423 (2001)

    Article  MATH  Google Scholar 

  21. Falk, M., Hüsler, J., Reiss, R.-D.: Laws of Small Numbers: Extremes and Rare Events. Birkhäuser, Basel (2011)

    Book  MATH  Google Scholar 

  22. Genest, C., Rivest, L.-P.: A characterization of Gumbel’s family of extreme value distributions. Stat. Probab. Lett. 8, 207–211 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gnedenko, B.V.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423–453 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gudendorf, G., Segers, J.: Extreme-value copulas. In: Jaworski, P., Durante, F., Karl Härdle, W., Rychlik, T. (eds.) Copula Theory and Its Applications. Lecture Notes in Statistics, vol. 198. Springer, Berlin (2010)

    Google Scholar 

  25. Gudendorf, G., Segers, J.: Nonparametric estimation of an extreme value copula in arbitrary dimensions. J. Multivariate Anal. 102(1), 37–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heffernan, J.E., Resnick, S.I.: Hidden regular variation and the rank transform. Adv. Appl. Prob. 37(2), 393–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hua, L., Joe, H.: Tail order and intermediate tail dependence of multivariate copulas. J. Multivariate Anal. 102, 1454–1471 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hua, L., Joe, H., Li, H.: Relations between hidden regular variation and tail order of copulas (under review). Technical Report, Department of Mathematics, Washington State University (2012)

    Google Scholar 

  29. Hüsler, J., Reiss, R.-D.: Maxima of normal random vectors: between independence and complete dependence. Stat. Probab. Lett. 7(4), 283–286 (1989)

    Article  MATH  Google Scholar 

  30. Jaworski, P.: On uniform tail expansions of bivariate copulas. Appl. Math. 31(4), 397–415 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Jaworski, P.: On uniform tail expansions of multivariate copulas and wide convergence of measures. Appl. Math. 33(2), 159–184 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Jaworski, P.: Tail behaviour of copulas, chapter 8. In: Jaworski, P., Durante, F., Härdle, W., Rychlik, T. (eds.) Copula Theory and Its Applications. Lecture Notes in Statistics, vol. 198. Springer, New York (2010)

    Chapter  Google Scholar 

  33. Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London (1997)

    Book  MATH  Google Scholar 

  34. Joe, H., Li, H.: Tail risk of multivariate regular variation. Meth. Comput. Appl. Probab. 13, 671–693 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Joe, H., Li, H., Nikoloulopoulos, A.K.: Tail dependence functions and vine copulas. J. Multivariate Anal. 101, 252–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Klüppelberg, C., Kuhn, G., Peng, L.: Semi-parametric models for the multivariate tail dependence function – the asymptotically dependent. Scand. J. Stat. 35(4), 701–718 (2008)

    Article  MATH  Google Scholar 

  37. Klüppelberg, C., Resnick, S.: The Pareto copula, aggregation of risks, and the emperor’s socks. J. Appl. Probab. 45(1), 67–84 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kortschak, D., Albrecher, H.: Asymptotic results for the sum of dependent non-identically distributed random variables. Meth. Comput. Appl. Probab. 11, 279–306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kurowicka, D., Cooke, R.: Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley, New York (2006)

    Book  MATH  Google Scholar 

  40. Kurowicka, D., Joe, H.: Dependence Modeling: Vine Copula Handbook. World Scientific, Singapore (2011)

    Google Scholar 

  41. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983)

    Book  MATH  Google Scholar 

  42. Li, H.: Duality of the multivariate distributions of Marshall-Olkin type and tail dependence. Commun. Stat. Theory Meth. 37(11), 1721–1733 (2008)

    Article  MATH  Google Scholar 

  43. Li, H.: Tail dependence comparison of survival Marshall-Olkin copulas. Meth. Comput. Appl. Probab. 10, 39–54 (2008)

    Article  MATH  Google Scholar 

  44. Li, H.: Orthant tail dependence of multivariate extreme value distributions. J. Multivariate Anal. 100, 243–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, H., Sun, Y.: Tail dependence for heavy-tailed scale mixtures of multivariate distributions. J. Appl. Prob. 46(4), 925–937 (2009)

    Article  MATH  Google Scholar 

  46. Li, H., Wu, P.: Extremal dependence of copulas: a tail density approach. J. Multivariate Anal. 114, 99–111 (2012)

    Article  Google Scholar 

  47. Mai, J.-F., Scherer, M.: Reparameterizing Marshall-Olkin copulas with applications to sampling. J. Stat. Comput. Simul. 81, 1–23 (2009)

    MathSciNet  Google Scholar 

  48. Mainik, G., Rüschendorf, L: On optimal portfolio diversification with respect to extreme risks. Finance Stoch. 14(4), 593–623 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Mainik, G., Rüschendorf, L.: Ordering of multivariate risk models with respect to extreme portfolio losses. Stat. Risk Model. 29(1), 73–106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Marshall, A.W., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 2, 84–98 (1967)

    MathSciNet  Google Scholar 

  51. Marshall, A.W., Olkin, I.: Domains of attraction of multivariate extreme value distributions. Ann. Probab. 11, 168–177 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  52. Maulik, K., Resnick, S.: Characterizations and examples of hidden regular variation. Extremes 7, 31–67 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, Princeton (2005)

    Google Scholar 

  54. Meerschaert, M.M., Scheffler, H.-P.: Limit Distributions for Sums of Independent Random Vectors. Wiley, New York (2001)

    MATH  Google Scholar 

  55. Nelsen, R.B.: An introduction to Copulas. Springer, New York (2006)

    MATH  Google Scholar 

  56. Nikoloulopoulos, A.K., Joe, H., Li, H.: Extreme value properties of multivariate t copulas. Extremes 12, 129–148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Padoan, S.: Multivariate extreme models based on underlying skew-t and skew-normal distributions. J. Multivariate Anal. 102, 977–991 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pickands, J.: III: Multivariate negative exponential and extreme value distributions. Unpublished manuscript, University of Pennsylvania (1980)

    Google Scholar 

  59. Resnick, S.: Extreme Values, Regularly Variation, and Point Processes. Springer, New York (1987)

    Google Scholar 

  60. Resnick, S.: Hidden regular variation, second order regular variation and asymptotic independence. Extremes 5, 303–336 (2002)

    Article  MathSciNet  Google Scholar 

  61. Resnick, S.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York (2007)

    Google Scholar 

  62. Schmidt, R.: Tail dependence for elliptically contoured distributions. Math. Meth. Oper. Res. 55, 301–327 (2002)

    Article  MATH  Google Scholar 

  63. Seneta, E.: Regularly Varying Functions. Springer, New York (1976)

    Book  MATH  Google Scholar 

  64. Wüthrich, M.V.: Asymptotic Value-at-Risk estimates for sums of dependent random variables. ASTIN Bull. 33(1), 75–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  65. Yakimiv, A.L.: Probabilistic Applications of Tauberian Theorems. Kroninklijke Brill NV, Leiden (2005)

    Book  MATH  Google Scholar 

  66. Zhou, C: Dependence structure of risk factors and diversification effects. Insur. Math. Econ. 46(3), 531–540 (2010)

    Article  MATH  Google Scholar 

  67. Zhu, L., Li, H.: Asymptotic analysis of conditional tail expectations. North American Actuarial J. 16(3), 350–363 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to sincerely thank the reviewer for his/her detailed comments, which led to an improvement of the presentation of this paper and also for pointing out a few references related to this work. The author also likes to thank Professor Piotr Jaworski for the invitation to contribute to this Volume.

Furthermore, he acknowledges that his research is supported by NSF grants CMMI 0825960 and DMS 1007556.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H. (2013). Toward a Copula Theory for Multivariate Regular Variation. In: Jaworski, P., Durante, F., Härdle, W. (eds) Copulae in Mathematical and Quantitative Finance. Lecture Notes in Statistics(), vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35407-6_9

Download citation

Publish with us

Policies and ethics