Fast and Private Computation of Cardinality of Set Intersection and Union

  • Emiliano De Cristofaro
  • Paolo Gasti
  • Gene Tsudik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7712)


In many everyday scenarios, sensitive information must be shared between parties without complete mutual trust. Private set operations are particularly useful to enable sharing information with privacy, as they allow two or more parties to jointly compute operations on their sets (e.g., intersection, union, etc.), such that only the minimum required amount of information is disclosed. In the last few years, the research community has proposed a number of secure and efficient techniques for Private Set Intersection (PSI), however, somewhat less explored is the problem of computing the magnitude, rather than the contents, of the intersection – we denote this problem as Private Set Intersection Cardinality (PSI-CA). This paper explores a few PSI-CA variations and constructs several protocols that are more efficient than the state-of-the-art.


Server Privacy Random Oracle Model Oblivious Transfer Blind Signature Scheme Botnet Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: SIGMOD (2003)Google Scholar
  2. 2.
    Applebaum, B., Ringberg, H., Freedman, M.J., Caesar, M., Rexford, J.: Collaborative, Privacy-Preserving Data Aggregation at Scale. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 56–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Ateniese, G., Blanton, M., Kirsch, J.: Secret handshakes with dynamic and fuzzy matching. In: NDSS (2007)Google Scholar
  4. 4.
    Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering GATTACA: Efficient and Secure Testing of Fully-Sequenced Human Genomes. In: CCS (2011)Google Scholar
  5. 5.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16(3) (2003)Google Scholar
  6. 6.
    Blundo, C., De Cristofaro, E., Gasti, P.: EsPRESSo: Efficient Privacy-Preserving Evaluation of Sample Set Similarity. In: DPM (2012)Google Scholar
  7. 7.
    Bursztein, E., Lagarenne, J., Hamburg, M., Boneh, D.: OpenConflict: Preventing Real Time Map Hacks in Online Games. In: S&P (2011)Google Scholar
  8. 8.
    Camenisch, J., Zaverucha, G.M.: Private Intersection of Certified Sets. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    De Cristofaro, E., Jarecki, S., Kim, J., Tsudik, G.: Privacy-Preserving Policy-Based Information Transfer. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 164–184. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    De Cristofaro, E., Kim, J., Tsudik, G.: Linear-Complexity Private Set Intersection Protocols Secure in Malicious Model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with Linear Complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data mining. In: PODS (2003)Google Scholar
  13. 13.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Frikken, K.: Privacy-Preserving Set Union. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Goldreich, O.: Foundations of Cryptography. Cambridge U. Press (2004)Google Scholar
  17. 17.
    Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Hohenberger, S., Weis, S.A.: Honest-Verifier Private Disjointness Testing Without Random Oracles. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 277–294. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Hong, J., Kim, J.W., Kim, J., Park, K., Cheon, J.H.: Constant-Round Privacy Preserving Multiset Union. Cryptology ePrint Archive, Report 2011/138 (2011),
  21. 21.
    Huang, Y., Evans, D., Katz, J.: Private Set Intersection: Are Garbled Circuits Better than Custom Protocols? In: NDSS (2012)Google Scholar
  22. 22.
    Huberman, B., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic communities. In: ACM Conference on Electronic Commerce (1999)Google Scholar
  23. 23.
    Intelligence Advanced Research Projects Activity (IARPA). Automatic Privacy Protection and Security and Privacy Assurance Research Programs,
  24. 24.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Kantarcioglu, M., Nix, R., Vaidya, J.: An Efficient Approximate Protocol for Privacy-Preserving Association Rule Mining. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 515–524. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)Google Scholar
  29. 29.
    Mardziel, P., Hicks, M., Katz, J., Srivatsa, M.: Knowledge-oriented secure multiparty computation. In: PLAS (2012)Google Scholar
  30. 30.
    Menezes, A., Oorschot, P.V., Vanstone, S.: Handbook of Applied Cryptography. CRC (1997)Google Scholar
  31. 31.
    Nagaraja, S., Mittal, P., Hong, C., Caesar, M., Borisov, N.: BotGrep: Finding Bots with Structured Graph Analysis. In: Usenix Security (2010)Google Scholar
  32. 32.
    Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location Privacy via Private Proximity Testing. In: NDSS (2011)Google Scholar
  33. 33.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  34. 34.
    Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transactions on Information Theory 24(1) (1978)Google Scholar
  35. 35.
    Seo, J.H., Cheon, J.H., Katz, J.: Constant-Round Multi-party Private Set Union Using Reversed Laurent Series. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 398–412. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  36. 36.
    Stefanov, E., Shi, E., Song, D.: Policy-Enhanced Private Set Intersection: Sharing Information While Enforcing Privacy Policies. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 413–430. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  37. 37.
    Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule mining. Journal of Computer Security 13(4) (2005)Google Scholar
  38. 38.
    Yao, A.: Protocols for secure computations. In: FOCS (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Emiliano De Cristofaro
    • 1
  • Paolo Gasti
    • 2
  • Gene Tsudik
    • 3
  1. 1.Palo Alto Research CenterUSA
  2. 2.New York Institute of TechnologyUSA
  3. 3.University of California IrvineUSA

Personalised recommendations