Finite Element Methods for Parabolic Problems

  • Norbert Hilber
  • Oleg Reichmann
  • Christoph Schwab
  • Christoph Winter
Part of the Springer Finance book series (FINANCE)


The finite element methods are an alternative to the finite difference discretization of partial differential equations. The advantage of finite elements is that they give convergent deterministic approximations of option prices under realistic, low smoothness assumptions on the payoff function as, e.g. for binary contracts. The basis for finite element discretization of the pricing PDE is a variational formulation of the equation. Therefore, we introduce the Sobolev spaces needed in the variational formulation and give an abstract setting for the parabolic PDEs.


Option Price Weak Derivative Riesz Representation Theorem Parabolic PDEs Element Shape Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 24.
    D. Braess. Finite elements, 3rd edition. Cambridge University Press, Cambridge, 2007. CrossRefGoogle Scholar
  2. 64.
    A. Ern and J.L. Guermond. Theory and practice of finite elements, volume 159 of Applied Mathematical Sciences. Springer, New York, 2004. zbMATHCrossRefGoogle Scholar
  3. 65.
    L.C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, 1998. zbMATHGoogle Scholar
  4. 115.
    J.-L. Lions and E. Magenes. Problèmes aux limites non homogènes et applications, volume 1 of Travaux et Recherches Mathématiques. Dunod, Paris, 1968. zbMATHGoogle Scholar
  5. 146.
    D. Schötzau. hp-DGFEM for parabolic evolution problems. PhD thesis, ETH Zürich, 1999. Google Scholar
  6. 147.
    D. Schötzau and Ch. Schwab. hp-discontinuous Galerkin time-stepping for parabolic problems. C. R. Acad. Sci. Paris Sér. I Math., 333(12):1121–1126, 2001. zbMATHCrossRefGoogle Scholar
  7. 154.
    V. Thomée. Galerkin finite element methods for parabolic problems, volume 25 of Springer Series in Computational Mathematics, 2nd edition. Springer, Berlin, 2006. zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Norbert Hilber
    • 1
  • Oleg Reichmann
    • 2
  • Christoph Schwab
    • 2
  • Christoph Winter
    • 3
  1. 1.Dept. for Banking, Finance, Insurance, School of Management and LawZurich University of Applied SciencesWinterthurSwitzerland
  2. 2.Seminar for Applied MathematicsSwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  3. 3.Allianz Deutschland AGMunichGermany

Personalised recommendations