Lévy Models

  • Norbert Hilber
  • Oleg Reichmann
  • Christoph Schwab
  • Christoph Winter
Part of the Springer Finance book series (FINANCE)


One problem with the Black–Scholes model is that empirically observed log returns of risky assets are not normally distributed, but exhibit significant skewness and kurtosis. If large movements in the asset price occur more frequently than in the BS-model of the same variance, the tails of the distribution, should be “fatter” than in the Black–Scholes case. Another problem is that observed log-returns occasionally appear to change discontinuously. Empirically, certain price processes with no continuous component have been found to allow for a considerably better fit of observed log returns than the classical BS model. Pricing derivative contracts on such underlyings becomes more involved mathematically and also numerically since partial integro-differential equations must be solved. We consider a class of price processes which can be purely discontinuous and which contains the Wiener process as special case, the class of Lévy processes. Lévy processes contain most processes proposed as realistic models for log-returns.


  1. 3.
    D. Applebaum. Lévy processes and stochastic calculus, volume 93 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2004. zbMATHCrossRefGoogle Scholar
  2. 8.
    O.E. Barndorff-Nielsen. Normal inverse Gaussian processes and the modelling of stock returns. Research report 300, Department of Theoretical Statistics, Aarhus University, 1995. Google Scholar
  3. 18.
    J. Bertoin. Lévy processes. Cambridge University Press, New York, 1996. zbMATHGoogle Scholar
  4. 20.
    I.H. Biswas. Viscosity solutions of integro-PDE: theory and numerical analysis with applications to controlled jump-diffusions. PhD thesis, University of Oslo, 2008. Google Scholar
  5. 23.
    S.I. Boyarchenko and S.Z. Levendorskiĭ. Non-Gaussian Merton–Black–Scholes theory, volume 9 of Advanced Series on Statistical Science & Applied Probability. World Scientific, River Edge, 2002. zbMATHGoogle Scholar
  6. 28.
    M. Briani, R. Natalini, and G. Russo. Implicit-explicit numerical schemes for jump–diffusion processes. Calcolo, 44(1):33–57, 2007. MathSciNetzbMATHCrossRefGoogle Scholar
  7. 36.
    P. Carr, H. Geman, D.B. Madan, and M. Yor. The fine structure of assets returns: an empirical investigation. J. Bus., 75(2):305–332, 2002. CrossRefGoogle Scholar
  8. 40.
    R. Cont and P. Tankov. Financial modelling with jump processes. Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, 2004. zbMATHGoogle Scholar
  9. 41.
    R. Cont and E. Voltchkova. A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal., 43(4):1596–1626, 2005. MathSciNetzbMATHCrossRefGoogle Scholar
  10. 42.
    R. Cont and E. Voltchkova. Integro-differential equations for option prices in exponential Lévy models. Finance Stoch., 9(3):299–325, 2005. MathSciNetzbMATHCrossRefGoogle Scholar
  11. 62.
    E. Eberlein and K. Prause. The generalized hyperbolic model: financial derivatives and risk measures. In H. Geman, D. Madan, S.R. Pliska, and T. Vorst, editors, Mathematical finance—Bachelier Congress, 2000. Springer Finance, pages 245–267. Springer, Berlin, 2002. Google Scholar
  12. 74.
    I.S. Gradshteyn and I.M. Ryzhik. Table of integrals, series, and products. Academic Press, New York, 1980. zbMATHGoogle Scholar
  13. 100.
    J. Kallsen and P. Tankov. Characterization of dependence of multidimensional Lévy processes using Lévy copulas. J. Multivar. Anal., 97(7):1551–1572, 2006. MathSciNetzbMATHCrossRefGoogle Scholar
  14. 107.
    G. Kou. A jump diffusion model for option pricing. Manag. Sci., 48(8):1086–1101, 2002. zbMATHCrossRefGoogle Scholar
  15. 110.
    D. Lamberton and M. Mikou. The critical price for the American put in an exponential Lévy model. Finance Stoch., 12(4):561–581, 2008. MathSciNetzbMATHCrossRefGoogle Scholar
  16. 111.
    D. Lamberton and M. Mikou. The smooth-fit property in an exponential Lévy model. J. Appl. Probab., 49(1):137–149, 2012. doi: 10.1239/jap/1331216838. MathSciNetzbMATHCrossRefGoogle Scholar
  17. 118.
    D.B. Madan, P. Carr, and E. Chang. The variance gamma process and option pricing. Eur. Finance Rev., 2(1):79–105, 1998. zbMATHCrossRefGoogle Scholar
  18. 125.
    R.C. Merton. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ., 3(1–2):125–144, 1976. zbMATHCrossRefGoogle Scholar
  19. 143.
    K. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. zbMATHGoogle Scholar
  20. 148.
    W. Schoutens. Lévy processes in finance. Wiley, Chichester, 2003. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Norbert Hilber
    • 1
  • Oleg Reichmann
    • 2
  • Christoph Schwab
    • 2
  • Christoph Winter
    • 3
  1. 1.Dept. for Banking, Finance, Insurance, School of Management and LawZurich University of Applied SciencesWinterthurSwitzerland
  2. 2.Seminar for Applied MathematicsSwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  3. 3.Allianz Deutschland AGMunichGermany

Personalised recommendations