A New Approach to Prevent Cardiovascular Diseases Based on SCORE Charts through Reasoning Methods and Mobile Monitoring

  • Jesús Fontecha
  • David Ausín
  • Federico Castanedo
  • Diego López-de-Ipiña
  • Ramón Hervás
  • José Bravo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7657)


Nowadays, vital signs monitoring with mobile devices such as smartphones and tablets is possible through Bluetooth-enabled biometric devices. In this paper, we propose a system to monitor the risk of cardiovascular diseases in Ambient Assisted Living environments through blood pressure monitoring and other clinical factors, using mobile devices and reasoning techniques based on the Systematic Coronary Risk Evaluation Project (SCORE) charts. Mobile applications for patients and doctors, and a reasoning engine based on SWRL rules have been developed.


Mobile Monitoring Ambient Assisted Living CVD Risk Blood Pressure Reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    European guidelines on cardiovascular disease prevention in clinical practice. European Society of Cardiology (2012)Google Scholar
  2. 2.
    Villarreal, V., Fontecha, J., Hervás, R., Bravo, J.: A Proposal of an Ubiquitous Monitoring Architecture Patterns-Enabled: A case study on Diabetes. Journal of Science of Computer Programming (in press, 2012)Google Scholar
  3. 3.
  4. 4.
    Villarreal, V., Bravo, J., Hervás, R.: MoMo: A Framework Proposal for Patient Mobile Monitoring. In: Proceedings of the 5th Conference of the Euro-American Association on Telematics and Information Systems, EATIS 2010, Panama, September 22-24. ACM Publication (2010)Google Scholar
  5. 5.
    Rector, A.: Medical Informatics, The description logic handbook, pp. 406–426. Cambridge University Press (2003)Google Scholar
  6. 6.
    Rector, A.L., Rogers, J.E., Zanstra, P.E., Van Der Haring, E.: OpenGALEN: open source medical terminology and tools. In: AMIA Annual Symposium Proceedings, American Medical Informatics Association, p. 982 (2003)Google Scholar
  7. 7.
  8. 8.
    Purves, I.N.: PRODIGY: implementing clinical guidance using computers. The British Journal of General Practice 48(434), 1552 (1998)Google Scholar
  9. 9.
    W3C, Web Ontology Language, OWL (2007),
  10. 10.
    W3C, SWRL: A Semantic Web Rule Language Combining OWL and RuleML (2004),
  11. 11.
    D’Agostino, R.B., Vasan, R.S., Pencina, M.J., Wolf, P.A., Cobain, M., Massaro, J.M., Kannel, W.B.: General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6), 743–753 (2008)CrossRefGoogle Scholar
  12. 12.
    World Health Organization, World Health Report 2002: reducing risks, promoting healthy life, Geneva: WHO (2002a)Google Scholar
  13. 13.
    Victor, R.G.: Systemic hypertension: Mechanisms and diagnosis, 9th edn. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, ch. 45. Saunders Elsevier, Philadelphia (2011)Google Scholar
  14. 14.
    Weber, C.: Top 10 High Blood Pressure Risk Factors (2007),
  15. 15.
    Horridge, M., Bechhofer, S.: The OWL API: a Java API for working with OWL 2 ontologies. In: Proc. of OWL Experiences and Directions (2009)Google Scholar
  16. 16.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl reasoner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–53 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jesús Fontecha
    • 1
  • David Ausín
    • 2
  • Federico Castanedo
    • 2
  • Diego López-de-Ipiña
    • 2
  • Ramón Hervás
    • 1
  • José Bravo
    • 1
  1. 1.MAmI Research LabUniversity of Castilla-La ManchaCiudad RealSpain
  2. 2.Deusto Institute of TechnologyDeustoTech. University of DeustoBilbaoSpain

Personalised recommendations