An Study on Re-identification in RGB-D Imagery

  • Javier Lorenzo-Navarro
  • Modesto Castrillón-Santana
  • Daniel Hernández-Sosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7657)


Re-identification is commonly accomplished using appearance features based on salient points and color information. In this paper, we make an study on the use of different features exclusively obtained from depth images captured with RGB-D cameras. The results achieved, using simple geometric features extracted in a top-view setup, seem to provide useful descriptors for the re-identification task.


re-dentification surveillance RGB-D 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(4), 743–761 (2012)CrossRefGoogle Scholar
  2. 2.
    Everingham, M., Sivic, J., Zisserman, A.: Taking the bite out of automated naming of characters in tv video. Image and Vision Computing 27, 545–559 (2009)CrossRefGoogle Scholar
  3. 3.
    Jarudi, I., Sinha, P.: Relative roles of internal and external features in face recognition. Technical Report memo 225, CBCL (2005)Google Scholar
  4. 4.
    D’Angelo, A., Dugelay, J.L.: People re-identification in camera networks based on probabilistic color histograms. In: Proc. SPIE, vol. 7882 (2011)Google Scholar
  5. 5.
    Lo Presti, L., Sclaroff, S., La Cascia, M.: Object Matching in Distributed Video Surveillance Systems by LDA-Based Appearance Descriptors. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 547–557. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Muñoz Salinas, R., Aguirre, E., García-Silvente, M.: People detection and tracking using stereo vision and color. Image Vision Computing 25(6), 995–1007 (2007)CrossRefGoogle Scholar
  7. 7.
    Yahiaoui, T., Khoudour, L., Meurie, C.: Real-time passenger counting in buses using dense stereovision. J. Electron. Imaging 20 (July 2010)Google Scholar
  8. 8.
    Harville, M.: Stereo person tracking with adaptive plan-view templates of height and occupancy statistics. Image and Vision Computing 22(2), 127–142 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Englebienne, G., van Oosterhout, T., Krose, B.: Tracking in sparse multi-camera setups using stereo vision. In: Third ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC (2009)Google Scholar
  10. 10.
    Zivkovic, Z., der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters 27, 773–780 (2006)CrossRefGoogle Scholar
  11. 11.
    Stauffer, G.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 246–252 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Javier Lorenzo-Navarro
    • 1
  • Modesto Castrillón-Santana
    • 1
  • Daniel Hernández-Sosa
    • 1
  1. 1.Instituto Universitario SIANIUniversidad de Las Palmas de Gran CanariaLas PalmasSpain

Personalised recommendations