Advertisement

Predicting Group Evolution in the Social Network

  • Piotr Bródka
  • Przemysław Kazienko
  • Bartosz Kołoszczyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7710)

Abstract

Groups – social communities are important components of entire societies, analysed by means of the social network concept. Their immanent feature is continuous evolution over time. If we know how groups in the social network has evolved we can use this information and try to predict the next step in the given group evolution. In the paper, a new aproach for group evolution prediction is presented and examined. Experimental studies on four evolving social networks revealed that (i) the prediction based on the simple input features may be very accurate, (ii) some classifiers are more precise than the others and (iii) parameters of the group evolution extracion method significantly influence the prediction quality.

Keywords

social network group evolution predicting group evolution group dynamics social network analysis GED 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)Google Scholar
  2. 2.
    Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bródka, P., Saganowski, S., Kazienko, P.: GED: The Method for Group Evolution Discovery in Social Networks. Social Network Analysis and Mining (2012), Open Access, http://www.springerlink.com/content/andd6771886878t8p10?, doi:10.1007/s13278-012-0058-8
  4. 4.
    Cleary, J.G., Trigg, L.E.: K*: An Instance-based Learner Using an Entropic Distance Measure. In: 12th International Conference on Machine Learning, pp. 108–114 (1995)Google Scholar
  5. 5.
    Cohen, W.W.: Fast Effective Rule Induction. In: Twelfth International Conference on Machine Learning, pp. 115–123 (1995)Google Scholar
  6. 6.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, pp. 148–156 (1996)Google Scholar
  7. 7.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)Google Scholar
  8. 8.
    John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, pp. 338–345 (1995)Google Scholar
  9. 9.
    Kairam, S., Wang, D., Leskovec, J.: The life and death of online groups: predicting group growth and longevity. In: WSDM 2012, pp. 673–682. ACM (2012), doi:10.1145/2124295.2124374Google Scholar
  10. 10.
    Kazienko, P., Ruta, D., Bródka, P.: The Impact of Customer Churn on Social Value Dynamics. International Journal of Virtual Communities and Social Networking 1(3), 60–72 (2009)CrossRefGoogle Scholar
  11. 11.
    Kohavi, R.: The Power of Decision Tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 174–189. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: KDD 2008, pp. 462–470. ACM (2008)Google Scholar
  13. 13.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. 58, 1019–1031 (2007), doi:10.1002/asi.20591CrossRefGoogle Scholar
  14. 14.
    McLachlan, G.J., Do, K.A., Ambroise, C.: Analyzing Microarray Gene Expression Data. Wiley Series in Probability and Statistics (2004) ISBN-10: 0471226165Google Scholar
  15. 15.
    Michalski, R., Palus, S., Bródka, P., Kazienko, P., Juszczyszyn, K.: Modelling Social Network Evolution. In: Datta, A., Shulman, S., Zheng, B., Lin, S.-D., Sun, A., Lim, E.-P. (eds.) SocInfo 2011. LNCS, vol. 6984, pp. 283–286. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  17. 17.
    Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  18. 18.
    Singh, L., Getoor, L.: Increasing the Predictive Power of Affiliation Networks. IEEE Data Eng. Bull (DEBU) 30(2), 41–50 (2007)Google Scholar
  19. 19.
    Wai-Ho, A., Chan, K.C.C., Xin, Y.: A novel evolutionary data mining algorithm with applications to churn prediction. IEEE Transactions on Evolutionary Computation 7(6), 532–545 (2003)CrossRefGoogle Scholar
  20. 20.
    Zheleva, E., Getoor, L., Golbeck, J., Kuter, U.: Using Friendship Ties and Family Circles for Link Prediction. In: Giles, L., Smith, M., Yen, J., Zhang, H. (eds.) SNAKDD 2008. LNCS, vol. 5498, pp. 97–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Bródka, P.: Key Users in Social Network. How to find them? LAP Lambert Academic Publishing (2012) ISBN-13: 978-3-659-19597-6, ISBN-10: 3659195979Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Piotr Bródka
    • 1
  • Przemysław Kazienko
    • 1
  • Bartosz Kołoszczyk
    • 1
  1. 1.Institute of InformaticsWrocław University of TechnologyWrocławPoland

Personalised recommendations