Advertisement

Studying Paths of Participation in Viral Diffusion Process

  • Jarosław Jankowski
  • Sylwia Ciuberek
  • Anita Zbieg
  • Radosław Michalski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7710)

Abstract

Authors propose a conceptual model of participation in viral diffusion process composed of four stages: awareness, infection, engagement and action. To verify the model it has been applied and studied in the virtual social chat environment settings. The study investigates the behavioural paths of actions that reflect the stages of participation in the diffusion and presents shortcuts, that lead to the final action – the attendance in a virtual event. The results show that the participation in each stage of the process increases the probability of reaching the final action. Nevertheless, the majority of users involved in the virtual event did not go through each stage of the process but followed the shortcuts. That suggests that the viral diffusion process is not necessarily a linear sequence of human actions but rather a dynamic system.

Keywords

information diffusion online social networks participation model multistage analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arndt, J.: Role of Product-Related conversations in the diffusion of a new product. Journal of Marketing Research 4(3), 291–295 (1967)CrossRefGoogle Scholar
  2. 2.
    Bakshy, E., Karrer, B., Adamic, L.A.: Social influence and the diffusion of user-created content. In: Proceedings of the 10th ACM Conference on Electronic Commerce, EC 2009, pp. 325–334. ACM, New York (2009)Google Scholar
  3. 3.
    Bandura, A.: Social cognitive theory of mass communication. In: Bryant, J., Zillman, D. (eds.) Media effects: Advances in theory and research, pp. 121–153. Lawrence Erlbaum Associates, Mahwah (2002)Google Scholar
  4. 4.
    Chiu, H.C., Hsieh, Y.C., Kao, Y.H., Lee, M.: The Determinants of Email Receivers’ Disseminating Behaviors on the Internet. Journal of Advertising Research 47(3), 524–534 (2007)CrossRefGoogle Scholar
  5. 5.
    Christakis, N.A., Fowler, J.H.: The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357(4), 370–379 (2007)CrossRefGoogle Scholar
  6. 6.
    Christakis, N.A., Fowler, J.H.: Social network sensors for early detection of contagious outbreaks. PLoS ONE 5(9), e12 948+ (2010)CrossRefGoogle Scholar
  7. 7.
    Coleman, J., Katz, E., Menzel, H.: The diffusion of an innovation among physicians. Sociometry 20(4), 253–270 (1957)CrossRefGoogle Scholar
  8. 8.
    De Bruyn, A., Lilien, G.L.: A multi-stage model of word-of-mouth influence through viral marketing. International Journal of Research in Marketing 25(3), 151–163 (2008)CrossRefGoogle Scholar
  9. 9.
    Emarketer Press Releases: Social Network Ad Revenues to Reach $10 Billion Worldwide in 2013 (2011)Google Scholar
  10. 10.
    Festinger, L.: Informal Social Communication. Psychological Review 57(5), 271–282 (1950)CrossRefGoogle Scholar
  11. 11.
    Godes, D., Mayzlin, D.: Firm-Created Word-of-Mouth communication: Evidence from a field test. Marketing Science 28(4), mksc.1080.0444-739 (2009)CrossRefGoogle Scholar
  12. 12.
    Goel, S., Mason, W., Watts, D.J.: Real and Perceived Attitude Agreement in Social Networks. Journal of Personality and Social Psychology 99(4), 611–621 (2010)CrossRefGoogle Scholar
  13. 13.
    Goel, S., Watts, D.J., Goldstein, D.G.: The Structure of Online Diffusion Networks. Forthcoming in ACM EC 2012 (2012)Google Scholar
  14. 14.
    Golan, G.J., Zaidner, L.: Creative Strategies in Viral Advertising: An Application of Taylor’s Six-Segment Message Strategy Wheel. Journal of Computer-Mediated Communication 13(4), 959–972 (2008)CrossRefGoogle Scholar
  15. 15.
    Goldenberg, J., Han, S., Lehmann, D.R., Hong, J.W.: The Role of Hubs in the Adoption Process. Journal of Marketing 73(2), 1–13 (2009)CrossRefGoogle Scholar
  16. 16.
    Granovetter, M.: The Strength of Weak Ties: A Network Theory Revisited. Sociological Theory 1, 201–233 (1983)CrossRefGoogle Scholar
  17. 17.
    Hinz, O., Skiera, B.: Barrot, C., Becker, J.U.: Seeding Strategies for Viral Marketing: An Empirical Comparison. Forthcoming in Journal of Marketing (2012)Google Scholar
  18. 18.
    Ho, J.Y.C., Dempsey, M.: Viral Marketing: Motivations to Forward Online Content. Journal of Business Research 63(9/10), 1000–1006 (2010)CrossRefGoogle Scholar
  19. 19.
    Katz, E., Lazarsfeld, P.: Personal Influence: The Part Played by People in the Flow of Mass Communications. Transaction Publishers (2005)Google Scholar
  20. 20.
    Keenan, A., Shiri, A.: Sociability and social interaction on social networking websites. Library Review 58(6), 438–450 (2009)CrossRefGoogle Scholar
  21. 21.
    Latané, B.: The psychology of social impact. American Psychologist 36(4), 343–356 (1981)CrossRefGoogle Scholar
  22. 22.
    Liu-Thompkins, Y.: Seeding viral content: Lessons from the diffusion of online videos. Forthcoming in Journal of Advertising Research (2011)Google Scholar
  23. 23.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology 27, 415–444 (2001)CrossRefGoogle Scholar
  24. 24.
    Nowak, A., Szamrej, J., Latané, B., Nowak, A., Szamrej, J., Latan, B.: From private attitude to public opinion: A dynamic theory of social impact. Psychological Review 97, 362–376 (1990)CrossRefGoogle Scholar
  25. 25.
    Rogers, E.M.: Diffusion of Innovations, 5th edn. Free Press, New York (2003)Google Scholar
  26. 26.
    Shu-Chuan, C., Kim, Y.: Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites. International Journal of Advertising 30(1), 47–75 (2011)CrossRefGoogle Scholar
  27. 27.
    Tarde, G.: On Communication and Social Influence: Selected Papers, Reprint edn., Apr. 15. Heritage of Sociology Series. University Of Chicago Press (2011) 1st edn. (1893)Google Scholar
  28. 28.
    Thackeray, R., Neiger, B.L., Hanson, C.L., McKenzie, J.F.: Enhancing Promotional Strategies Within Social Marketing Programs: Use of Web 2.0 Social Media. Health Promotion Practice 9(4), 338–343 (2008)CrossRefGoogle Scholar
  29. 29.
    Trusov, M., Bodapati, A.V., Bucklin, R.E.: Determining Influential Users in Internet Social Networks. Journal of Marketing Research 47(4), 643–658 (2010)CrossRefGoogle Scholar
  30. 30.
    van den Bulte, C., Lilien, G.L.: Medical Innovation Revisited: Social Contagion versus Marketing Effort. American Journal of Sociology 106(5), 1409–1435 (2001)CrossRefGoogle Scholar
  31. 31.
    van den Bulte, C., Wuyts, S.: Social Networks and Marketing. Marketing Science Institute, Cambridge (2007)Google Scholar
  32. 32.
    Valente, T.W.: Network Models of the Diffusion of Innovations. Hampton Press, NJ (1995)Google Scholar
  33. 33.
    van der Lans, R., van Bruggen, G., Eliashberg, J., Wierenga, B.: A Viral Branching Model for Predicting the Spread of Electronic Word of Mouth. Marketing Science 29(2), 348–365 (2010)CrossRefGoogle Scholar
  34. 34.
    Watts, D.J.: A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences 99(9), 5766–5771 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Watts, D.J., Dodds, P.S.: Influentials, networks, and public opinion formation. Journal of Consumer Research 34(4), 441–458 (2007)CrossRefGoogle Scholar
  36. 36.
    Zbieg, A., Żak, B., Jankowski, J., Michalski, R., Ciuberek, S.: Studying Diffusion of Viral Content at Dyadic Level. In: Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1291–1297. IEEE Conference Publications (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jarosław Jankowski
    • 1
  • Sylwia Ciuberek
    • 2
  • Anita Zbieg
    • 3
    • 4
  • Radosław Michalski
    • 2
  1. 1.Faculty of Computer ScienceWest Pomeranian University of TechnologySzczecinPoland
  2. 2.Institute of InformaticsWrocław University of TechnologyPoland
  3. 3.Institute of PsychologyUniversity of WrocławPoland
  4. 4.Wroclaw University of EconomicsPoland

Personalised recommendations