Models of Social Groups in Blogosphere Based on Information about Comment Addressees and Sentiments

  • Bogdan Gliwa
  • Jarosław Koźlak
  • Anna Zygmunt
  • Krzysztof Cetnarowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7710)


This work concerns the analysis of number, sizes and other characteristics of groups identified in the blogosphere using a set of models identifying social relations. These models differ regarding identification of social relations, influenced by methods of classifying the addressee of the comments (they are either the post author or the author of a comment on which this comment is directly addressing) and by a sentiment calculated for comments considering the statistics of words present and connotation. The state of a selected blog portal was analyzed in sequential, partly overlapping time intervals. Groups in each interval were identified using a version of the CPM algorithm, on the basis of them, stable groups, existing for at least a minimal assumed duration of time, were identified.


social network analysis groups blogosphere sentiment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, N., Liu, H.: Modeling and Data Mining in Blogosphere. Moegan & Claypool Publishers (2009)Google Scholar
  2. 2.
    Akritidis, L., Katsaros, D., Bozanis, P.: Identifying influential bloggers: Time does matter. In: Procs. of the 2009 IEEE/WIC/ACM Int. Joint Conf. on Web Intelligence and Intelligent Agent Technology, WI-IAT 2009, vol. 1, pp. 76–83. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  3. 3.
    Bermingham, A., Conway, M., McInerney, L., O’Hare, N., Smeaton, A.F.: Combining social network analysis and sentiment analysis to explore the potential for online radicalisation. In: Proc. of the 2009 Int. Conf. on Adv. in Social Network Analysis and Mining, pp. 231–236. IEEE Comp. Soc., Washington, DC, USA (2009)CrossRefGoogle Scholar
  4. 4.
    Chi, Y., Zhu, S., Song, X., Tatemura, J., Tseng, B.L.: Structural and temporal analysis of the blogosphere through community factorization. In: Proc. of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2007, pp. 163–172. ACM, New York (2007)Google Scholar
  5. 5.
    Fortunato, S.: Community detection in graphs. Phys. Rep., ch. 486 (2010)Google Scholar
  6. 6.
    Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Koźlak, J.: Identification of group changes in blogosphere. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012, Istanbul, Turkey, August 26-29. IEEE Computer Society (2012)Google Scholar
  7. 7.
    Gryc, W., Moilanen, K.: Leveraging textual sentiment analysis with social network modelling: Sentiment analysis of political blogs in the 2008 u.s. presidential election. In: Procs. of the ”From Text to Political Positions” Workshop (T2PP 2010). Vrije Universiteit, Amsterdam (2010)Google Scholar
  8. 8.
    Koźlak, J., Zygmunt, A.: Agent-based modelling of social organisations. In: International Conference on Complex, Intelligent and Software Intensive Systems, CISIS 2011, Korean Bible University, Seoul, Korea, June 30-July 2, pp. 467–472. IEEE Computer Society (2011)Google Scholar
  9. 9.
    Krauss, J., Nann, S., Simon, D., Fischbach, K., Gloor, P.: Predicting movie success and academy awards through sentiment and social network analysis. In: ECIS 2008 Proceedings (2008)Google Scholar
  10. 10.
    Nguyen, T., Phung, D.Q., Adams, B., Tran, T., Venkatesh, S.: Hyper-community detection in the blogosphere. In: Proceedings of Second ACM SIGMM Workshop on Social Media, WSM 2010, pp. 21–26. ACM, New York (2010)Google Scholar
  11. 11.
    Ning, H., Xu, W., Chi, Y., Gong, Y., Huang, T.S.: Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recogn. 43(1), 113–127 (2010)Google Scholar
  12. 12.
    Palla, G., Ábel, D., Farkas, I.J., Pollner, P., Derényi, I., Vicsek, T.: k-clique percolation and clustering. In: Bollobás, B., Kozma, R., Miklós, D. (eds.) Handbook of Large-scale Random Networks. Springer (2009)Google Scholar
  13. 13.
    Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  14. 14.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2) (2008)Google Scholar
  15. 15.
    Shamma, D.A., Kennedy, L., Churchill, E.F.: Statler: Summarizing media through short-messaging services. In: CSW 2010. ACM, USA (2010)Google Scholar
  16. 16.
    Tang, L., Liu, H.: Graph mining applications to social network analysis. In: Aggarwal, C., Wang, X. (eds.) Managing and Mining Graph Data. Springer (2010)Google Scholar
  17. 17.
    Tromp, E., Pechenizkiy, M.: Senticorr: Multilingual sentiment analysis of personal correspondence. In: Proc. of ICDM 2011 Workshops. IEEE Press (2011)Google Scholar
  18. 18.
    Xu, K., Li, J., Liao, S.S.: Sentiment community detection in social networks. In: Procs. of the 2011 iConference, iConf. 2011, pp. 804–805. ACM, NY (2011)Google Scholar
  19. 19.
    Zygmunt, A., Bródka, P., Kazienko, P., Koźlak, J.: Different approaches to groups and key person identification in blogosphere. In: International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2011, Kaohsiung, Taiwan, July 25-27, pp. 593–598. IEEE Computer Society (2011)Google Scholar
  20. 20.
    Zygmunt, A., Bródka, P., Kazienko, P., Koźlak, J.: Key person analysis in social communities within the blogosphere. J. UCS 18(4), 577–597 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bogdan Gliwa
    • 1
  • Jarosław Koźlak
    • 1
  • Anna Zygmunt
    • 1
  • Krzysztof Cetnarowicz
    • 1
  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations