Skip to main content

The Multidimensional Study of Viral Campaigns as Branching Processes

  • Conference paper
Social Informatics (SocInfo 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7710))

Included in the following conference series:

Abstract

Viral campaigns on the Internet may follow variety of models, depending on the content, incentives, personal attitudes of sender and recipient to the content and other factors. Due to the fact that the knowledge of the campaign specifics is essential for the campaign managers, researchers are constantly evaluating models and real-world data. The goal of this article is to present the new knowledge obtained from studying two viral campaigns that took place in a virtual world which followed the branching process. The results show that it is possible to reduce the time needed to estimate the model parameters of the campaign and, moreover, some important aspects of time-generations relationship are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, R.M., May, R.M.: The logic of vaccination. New Scientist, 410–415 (1982)

    Google Scholar 

  2. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control, 1st edn. Oxford Science Publications. Oxford University Press (1992)

    Google Scholar 

  3. Ba, S., Pavlou, P.: Evidence of the effect of trust building technology in electronic markets: Price premiums and buyer behavior, Social Science Research Network Working Paper Series (2006)

    Google Scholar 

  4. Bampo, M., Ewing, M.T., Mather, D.R., Stewart, D.B., Wallace, M.: The effects of the social structure of digital networks on viral marketing performance (2008)

    Google Scholar 

  5. Bass, F.M.: A new product growth model for consumer durables. Management Science 15, 215–227 (1969)

    Article  MATH  Google Scholar 

  6. Becker, N.G.: Analysis of Infectious Disease Data. Chapman & Hall, London (1989)

    Google Scholar 

  7. Bolton, G.E., Katok, E., Ockenfels, A.: How effective are electronic reputation mechanisms? an experimental investigation. Manage. Sci. 50(11), 1587–1602 (2004)

    Article  Google Scholar 

  8. Centola, D., Macy, M.W.: Complex contagion and the weakness of long ties. American Journal of Sociology 113(3), 702–734 (2007)

    Article  Google Scholar 

  9. Frauenthal, J.C.: Mathematical Modelling in Epidemiology. Springer, New York (1980)

    Book  Google Scholar 

  10. Fulford, G., Forrester, P., Jones, A.: Modelling with Differential and Difference Equations. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  11. Guo, L., Tan, E., Chen, S., et al.: Analyzing Patterns of User Content Generation in Online Social Networks. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 369–377 (2009)

    Google Scholar 

  12. Heyde, C.C.: Remarks on Efficiency in Estimation for Branching Processe. Biometrika 62(1), 49–55 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heyde, C.C.: On Estimating the Variance of the Offspring Distribution in a Simple Branching Process. In: Maller, R., Basawa, I., Hall, P., et al. (eds.) Selected Works of C.C. Heyde, pp. 276–288. Springer, New York (2010)

    Chapter  Google Scholar 

  14. Holme, P., Newman, M.E.J.: Nonequilibrium phase transition in the coevolution of networks and opinions. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 74(5) (2006)

    Google Scholar 

  15. Hunter, D.R., Goodreau, S.M., Handcock, M.S.: Goodness of Fit of Social Network Models. Journal of the American Statistical Association 103, 248–258 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iribarren, J.L., Moro, E.: Affinity Paths and Information Diffusion in Social Networks. Social Networks 33, 134–142 (2011)

    Article  Google Scholar 

  17. Iribarren, J., Moro, E.: Impact of Human Activity Patterns on the Dynamics of Information Diffusion. Phys. Rev. Lett. 103, 038702 (2009)

    Google Scholar 

  18. Iribarren, J.L., Moro, E.: Branching Dynamics of Viral Information Spreading. Phys. Rev. E., 84, 046116 (2011)

    Google Scholar 

  19. Jacob, C.: Branching Processes: Their Role in Epidemiology. International Journal of Environmental Research and Public Health 7, 1186–1204 (2010)

    Article  Google Scholar 

  20. Klein, B., Macdonald, P.D.M.: The Multitype Continuous-Time Markov Branching Process in a Periodic Environment. Advances in Applied Probability 12(1), 81–93 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kolmogorov, A.N., Dmitriev, N.A.: Branching stochastic processes, Doklady Akad. Nauk U.S.S.R. 56, 5–8 (1947)

    Google Scholar 

  22. van der Lans, R., van Bruggen, G., Eliashberg, J., Wierenga, B.: A viral branching model for predicting the spread of electronic word of mouth. Marketing Science 29(2), 348–365 (2010)

    Article  Google Scholar 

  23. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web 1(1) (2007)

    Google Scholar 

  24. Norman, B.: The Mathematical Theory of Infectious Diseases and its Applications. Griffin, London (1975)

    MATH  Google Scholar 

  25. Stewart, D.B., Ewing, M.T., Mather, D.R.: A Conceptual Framework for Viral Marketing. In: ANZMAC 2009 (2009)

    Google Scholar 

  26. Tadic, B., Thurner, S.: Information Super-Diffusion on Structured Networks. Physica A 332, 566–584 (2004)

    Article  MathSciNet  Google Scholar 

  27. Tsallis, C., Bukman, D.: Anomalous Diffusion in the Presence of External Forces: Exact Time-Dependent Solutions and their Thermostatistical Basis. Phys. Rev. E. 54, R2197–R2200 (1996)

    Google Scholar 

  28. Valente, T.: Network models of the diffusion of innovations (quantitative methods in communication subseries). Hampton Press, NJ (1995)

    Google Scholar 

  29. Wu, F., Huberman, B.A.: Social structure and opinion formation (2004)

    Google Scholar 

  30. Yang, J., Leskovec, J.: Modeling Information Diffusion in Implicit Networks. In: Proceedings - IEEE International Conference on Data Mining, ICDM, pp. 599–608 (2010)

    Google Scholar 

  31. Zekri, N., Clerc, J.: Statistical and Dynamical Study of Disease Propagation in a Small World Network. Phys. Rev. E. 64, 56115 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jankowski, J., Michalski, R., Kazienko, P. (2012). The Multidimensional Study of Viral Campaigns as Branching Processes. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds) Social Informatics. SocInfo 2012. Lecture Notes in Computer Science, vol 7710. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35386-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35386-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35385-7

  • Online ISBN: 978-3-642-35386-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics