Advertisement

The Multidimensional Study of Viral Campaigns as Branching Processes

  • Jarosław Jankowski
  • Radosław Michalski
  • Przemysław Kazienko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7710)

Abstract

Viral campaigns on the Internet may follow variety of models, depending on the content, incentives, personal attitudes of sender and recipient to the content and other factors. Due to the fact that the knowledge of the campaign specifics is essential for the campaign managers, researchers are constantly evaluating models and real-world data. The goal of this article is to present the new knowledge obtained from studying two viral campaigns that took place in a virtual world which followed the branching process. The results show that it is possible to reduce the time needed to estimate the model parameters of the campaign and, moreover, some important aspects of time-generations relationship are presented.

Keywords

viral campaigns diffusion of information branching process social network analysis virtual worlds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R.M., May, R.M.: The logic of vaccination. New Scientist, 410–415 (1982)Google Scholar
  2. 2.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control, 1st edn. Oxford Science Publications. Oxford University Press (1992)Google Scholar
  3. 3.
    Ba, S., Pavlou, P.: Evidence of the effect of trust building technology in electronic markets: Price premiums and buyer behavior, Social Science Research Network Working Paper Series (2006)Google Scholar
  4. 4.
    Bampo, M., Ewing, M.T., Mather, D.R., Stewart, D.B., Wallace, M.: The effects of the social structure of digital networks on viral marketing performance (2008)Google Scholar
  5. 5.
    Bass, F.M.: A new product growth model for consumer durables. Management Science 15, 215–227 (1969)zbMATHCrossRefGoogle Scholar
  6. 6.
    Becker, N.G.: Analysis of Infectious Disease Data. Chapman & Hall, London (1989)Google Scholar
  7. 7.
    Bolton, G.E., Katok, E., Ockenfels, A.: How effective are electronic reputation mechanisms? an experimental investigation. Manage. Sci. 50(11), 1587–1602 (2004)CrossRefGoogle Scholar
  8. 8.
    Centola, D., Macy, M.W.: Complex contagion and the weakness of long ties. American Journal of Sociology 113(3), 702–734 (2007)CrossRefGoogle Scholar
  9. 9.
    Frauenthal, J.C.: Mathematical Modelling in Epidemiology. Springer, New York (1980)CrossRefGoogle Scholar
  10. 10.
    Fulford, G., Forrester, P., Jones, A.: Modelling with Differential and Difference Equations. Cambridge University Press, Cambridge (1997)zbMATHCrossRefGoogle Scholar
  11. 11.
    Guo, L., Tan, E., Chen, S., et al.: Analyzing Patterns of User Content Generation in Online Social Networks. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 369–377 (2009)Google Scholar
  12. 12.
    Heyde, C.C.: Remarks on Efficiency in Estimation for Branching Processe. Biometrika 62(1), 49–55 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Heyde, C.C.: On Estimating the Variance of the Offspring Distribution in a Simple Branching Process. In: Maller, R., Basawa, I., Hall, P., et al. (eds.) Selected Works of C.C. Heyde, pp. 276–288. Springer, New York (2010)CrossRefGoogle Scholar
  14. 14.
    Holme, P., Newman, M.E.J.: Nonequilibrium phase transition in the coevolution of networks and opinions. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 74(5) (2006)Google Scholar
  15. 15.
    Hunter, D.R., Goodreau, S.M., Handcock, M.S.: Goodness of Fit of Social Network Models. Journal of the American Statistical Association 103, 248–258 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Iribarren, J.L., Moro, E.: Affinity Paths and Information Diffusion in Social Networks. Social Networks 33, 134–142 (2011)CrossRefGoogle Scholar
  17. 17.
    Iribarren, J., Moro, E.: Impact of Human Activity Patterns on the Dynamics of Information Diffusion. Phys. Rev. Lett. 103, 038702 (2009)Google Scholar
  18. 18.
    Iribarren, J.L., Moro, E.: Branching Dynamics of Viral Information Spreading. Phys. Rev. E., 84, 046116 (2011)Google Scholar
  19. 19.
    Jacob, C.: Branching Processes: Their Role in Epidemiology. International Journal of Environmental Research and Public Health 7, 1186–1204 (2010)CrossRefGoogle Scholar
  20. 20.
    Klein, B., Macdonald, P.D.M.: The Multitype Continuous-Time Markov Branching Process in a Periodic Environment. Advances in Applied Probability 12(1), 81–93 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kolmogorov, A.N., Dmitriev, N.A.: Branching stochastic processes, Doklady Akad. Nauk U.S.S.R. 56, 5–8 (1947)Google Scholar
  22. 22.
    van der Lans, R., van Bruggen, G., Eliashberg, J., Wierenga, B.: A viral branching model for predicting the spread of electronic word of mouth. Marketing Science 29(2), 348–365 (2010)CrossRefGoogle Scholar
  23. 23.
    Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web 1(1) (2007)Google Scholar
  24. 24.
    Norman, B.: The Mathematical Theory of Infectious Diseases and its Applications. Griffin, London (1975)zbMATHGoogle Scholar
  25. 25.
    Stewart, D.B., Ewing, M.T., Mather, D.R.: A Conceptual Framework for Viral Marketing. In: ANZMAC 2009 (2009)Google Scholar
  26. 26.
    Tadic, B., Thurner, S.: Information Super-Diffusion on Structured Networks. Physica A 332, 566–584 (2004)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tsallis, C., Bukman, D.: Anomalous Diffusion in the Presence of External Forces: Exact Time-Dependent Solutions and their Thermostatistical Basis. Phys. Rev. E. 54, R2197–R2200 (1996)Google Scholar
  28. 28.
    Valente, T.: Network models of the diffusion of innovations (quantitative methods in communication subseries). Hampton Press, NJ (1995)Google Scholar
  29. 29.
    Wu, F., Huberman, B.A.: Social structure and opinion formation (2004)Google Scholar
  30. 30.
    Yang, J., Leskovec, J.: Modeling Information Diffusion in Implicit Networks. In: Proceedings - IEEE International Conference on Data Mining, ICDM, pp. 599–608 (2010)Google Scholar
  31. 31.
    Zekri, N., Clerc, J.: Statistical and Dynamical Study of Disease Propagation in a Small World Network. Phys. Rev. E. 64, 56115 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jarosław Jankowski
    • 1
  • Radosław Michalski
    • 2
  • Przemysław Kazienko
    • 2
  1. 1.Faculty of Computer ScienceWest Pomeranian University of TechnologySzczecinPoland
  2. 2.Institute of InformaticsWrocław University of TechnologyWrocławPoland

Personalised recommendations