Analysis and Support of Lifestyle via Emotions Using Social Media

  • Ward van Breda
  • Jan Treur
  • Arlette van Wissen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7710)


Using recent insights from Cognitive, Affective and Social Neuroscience, this paper addresses how affective states in social interactions can be used through social media to analyze and support lifestyle behaviour. A computational model is provided that integrates both mechanisms for the impact of one’s emotions on behaviour, and for the impact of emotions of others on one’s own emotion. The model is used to assess the state of a user with regard to a lifestyle goal (such as exercising frequently), based on extracted information of emotions exchanged in social interaction. Support is provided by proposing ways to affect these social interactions, which will indirectly influence the impact of the emotions of others. An ambient intelligent system based on this model has been implemented for the social medium Twitter.


Social media emotion lifestyle support Ambient Intelligence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbib, M.A.: How the Brain Got Language: The Mirror System Hypothesis. Oxford University Press (2012)Google Scholar
  2. 2.
    Balahur, A., Montoyo, A., Martınez-Barco, P., Boldrini, E. (eds.): Proc. of the Third International Workshop on Computational Approaches to Subjectivity and Sentiment Analysis, WASSA 2012. Association for Computational Linguistics. ACL (2012)Google Scholar
  3. 3.
    Bejarano, T.: Becoming Human: From Pointing Gestures to Syntax. John Benjamins (2011)Google Scholar
  4. 4.
    Bollen, J., Mao, H. and Pepe, A.: Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (2011) Google Scholar
  5. 5.
    Bosse, T., Hoogendoorn, M., Klein, M.C.A., Treur, J.: An Ambient Agent Model for Monitoring and Analysing Dynamics of Complex Human Behaviour. Journal of Ambient Intelligence and Smart Environments 3, 283–303 (2011)Google Scholar
  6. 6.
    Bosse, T., Jonker, C.M., van der Meij, L., Treur, J.: A Language and Environment for Analysis of Dynamics by Simulation. International Journal of Artificial Intelligence Tools 16, 435–464 (2007)CrossRefGoogle Scholar
  7. 7.
    Consolvo, S., Everitt, K., Smith, I., Landay, J.A.: Design Requirements for Technologies that Encourage Physical Activity. In: Proc. CHI 2006, pp. 457–466. ACM Press (2006)Google Scholar
  8. 8.
    Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient Intelligence: Technologies, applications, and opportunities. Pervasive and Mobile Computing 5, 277–298 (2009)CrossRefGoogle Scholar
  9. 9.
    Damasio, A.: Descartes’ error: emotion, reason, and the human brain. Grosset/Putnam, New York (1994)Google Scholar
  10. 10.
    Duell, R., Memon, Z.A., Treur, J., van der Wal, C.N.: An Ambient Agent Model for Group Emotion Support. In: Cohn, J., Nijholt, A., Pantic, M. (eds.) Proceedings of the Third International Conference on Affective Computing and Intelligent Interaction, ACII 2009, pp. 550–557. IEEE Computer Society Press (2009)Google Scholar
  11. 11.
    Gallant, M.P.: The Influence of Social Support on Chronic Illness Self-management: A Review and Directions for Research. Health Education and Behavior 30, 170–195 (2003)CrossRefGoogle Scholar
  12. 12.
    Gilbert, E., Karahalios, K.: Predicting Tie Strength With Social Media. In: Proc. CHI 2009 (2009)Google Scholar
  13. 13.
    Granovetter, M.: The Strength of Weak Ties: A Network Theory Revisited. Sociological Theory 1, 201–233 (1983)CrossRefGoogle Scholar
  14. 14.
    Iacoboni, M.: Mirroring People. Farrar, Straus & Giroux, New York (2008)Google Scholar
  15. 15.
    JSON (2012),
  16. 16.
    Kendall, L., Hartzier, A., Klasnja, P.V., Pratt, W.: Descriptive Analysis of Physical Activity Conversations on Twitter. In: Proc. CHIEA 2011, pp. 1555–1560 (2011)Google Scholar
  17. 17.
    Kramer, A.: The Spread of Emotion via Facebook. In: Proc. CHI 2012, pp. 767–770 (2012)Google Scholar
  18. 18.
    Marsden, P.V., Campbell, K.E.: Measuring Tie Strength. Social Forces 63, 482–501 (1990)Google Scholar
  19. 19.
    McNeill, L.H., Kreuter, M.W., Subramanian, S.V.: Social Environment and Physical Activity: a review of concepts and evidence. Soc. Sci. Med. 63, 1011–1022 (2006)CrossRefGoogle Scholar
  20. 20.
    Mitrovic, M., Paltoglou, G., Tadic, B.: Quantitative Analysis of Bloggers Collective Behavior Powered by Emotions. J. Stat. Mech. (2011)Google Scholar
  21. 21.
    Montague, P.R., Berns, G.S.: Neural Economics and the Biological Substrates of Valuation. Neuron 36, 265–284 (2002)CrossRefGoogle Scholar
  22. 22.
    Morris, M.R., Teevan, J., Panovich, K.: A Comparison of Information Seeking Using Search Engines and Social Networks. In: Proc. ICWSM 2010 (2010)Google Scholar
  23. 23.
    Morris, M.R., Teevan, J., Panovich, K.: What Do People Ask Their Social Networks, and Why? A Survey Study of Status Message Q&A Behavior. In: Proc. CHI 2010, pp. 291–294 (2010)Google Scholar
  24. 24.
    Morrison, S.E., Salzman, C.D.: Revaluing the Amygdala. Current Opinion in Neurobiology 20, 221–230 (2010)CrossRefGoogle Scholar
  25. 25.
    Murray, E.A.: The amygdala, reward and emotion. Trends Cogn. Sci. 11, 489–497 (2007)CrossRefGoogle Scholar
  26. 26.
    MySQL (2012),
  27. 27.
    Palmer, C.A., Baucom, D.H., McBride, C.M.: Couple Approaches to Smoking Cessation. In: Schmaling, K.B., Sher, T.G. (eds.) The Psychology of Couples and Illness: Theory, Research, and Practice, pp. 311–336. American Psychological Association, Washington, DC (2000)Google Scholar
  28. 28.
    Paltoglou, G., Thelwall, M., Buckley, K.: Online Textual Communications Annotated with Grades of Emotion Strength. In: Proceedings of the 3rd International Workshop of Emotion: Corpora for Research on Emotion and Affect, pp. 25–31 (2010)Google Scholar
  29. 29.
    PHP (2012),
  30. 30.
    Pineda, J.A. (ed.): Mirror Neuron Systems: the Role of Mirroring Processes in Social Cognition. Humana Press Inc. (2009)Google Scholar
  31. 31.
    Quinn, J.A., Pascoe, A., Wood, W., Neal, D.T.: Can’t Control Yourself? Monitor Those Bad Habits. Pers. Soc. Psychol. Bull. 36, 499–511 (2010)CrossRefGoogle Scholar
  32. 32.
    Rjmetrics, New data on Twitter’s Users and Engagement (2010),
  33. 33.
    Rizzolatti, G., Sinigaglia, C.: Mirrors in the Brain: How Our Minds Share Actions and Emotions. Oxford University Press (2008)Google Scholar
  34. 34.
    Rogers, E.M., Cartano, D.G.: Methods of Measuring Opinion Leadership. Public Opinion Quarterly 26, 435–441 (1962)CrossRefGoogle Scholar
  35. 35.
    Salzman, C.D., Fusi, S.: Emotion, Cognition, and Mental State Representation in Amygdala and Prefrontal Cortex. Annu. Rev. Neurosci. 33, 173–202 (2010)CrossRefGoogle Scholar
  36. 36.
    Scanfeld, D., Scanfeld, V., Larson, E.L.: Dissemination of health information through social networks: Twitter and antibiotics. Amer. J. of Infection Control 38, 182–188 (2010)CrossRefGoogle Scholar
  37. 37.
    Spanier, P.A., Allison, K.R.: General Social Support and Physical Activity: An Analysis of the Ontario Health Survey. Canadian Journal of Public Health 92, 210–213 (2001)Google Scholar
  38. 38.
    Sugrue, L.P., Corrado, G.S., Newsome, W.T.: Choosing the Greater of Two Goods: Neural Currencies for Valuation and Decision Making. Nat. Rev. Neurosci. 6, 363–375 (2005)CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Valente, T.W.: Social Networks and Health: Models, Methods and Applications. Oxford University Press (2010)Google Scholar
  41. 41.
    Wing, R.R., Jeffrey, R.W.: Benefits of Recruiting Participants with Friends and Increasing Social Support for Weight Loss and Maintenance. Journal of Consulting and Clinical Psychology 67, 132–138 (1999)CrossRefGoogle Scholar
  42. 42.
    Zimmerman, R.S., Connor, C.: Health Promotion in Context: The Effects of Significant Others on Health Behavior Change. Health Educ. Behav. 16, 57–75 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ward van Breda
    • 1
  • Jan Treur
    • 1
  • Arlette van Wissen
    • 1
  1. 1.Agent Systems Research GroupVU University AmsterdamThe Netherlands

Personalised recommendations