How Many Answers Are Enough? Optimal Number of Answers for Q&A Sites

  • Pnina Fichman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7710)


With the proliferation of the social web questions about information quality and optimization attract the attention of IS scholars. Question-answering (QA) sites, such as Yahoo!Answers, have the potential to produce good answers, but at the same time not all answers are good and not all QA sites are alike. When organizations design and plan for the integration of question answering services on their sites, identification of good answers and process optimization become critical. Arguing that ‘given enough answers all questions are answered successfully,’ this paper identifies the optimal number of posts that generate high quality answers. Based on content analysis of Yahoo! Answers’ informational questions (n=174) and their answers (n=1,023), the study found that seven answers per question are ‘enough’ to provide a good answer.


Q&A sites CQA Optimization Web 2.0 Information Quality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Briggs, R.O., Nunamaker, J., Sprague, R.: Introduction to the special section: social aspects of sociotechnical systems. Journal of Management Information Systems 27(1), 13–16 (2010)CrossRefGoogle Scholar
  2. 2.
    Ballou, D., Madnick, S., Wang, R.: Special section: assuring information quality. Journal of Management Information & Systems 20(3), 9–11 (2003)Google Scholar
  3. 3.
    Nelson, R.R., Todd, P.A., Wixom, B.: Antecedents of information and system quality: an empirical examination within the context of data warehousing. Journal of Management Information Systems 21(4), 199–235 (2005)Google Scholar
  4. 4.
    Schweik, C.M., English, R.C., Kisting, M., Haire, S.: Brooks’ versus Linus’ law: an empirical test of open source projects. In: Proceedings of the 2008 International Conference on Digital Government Research, pp. 423–424. ACM, Montreal (2008)Google Scholar
  5. 5.
    Howe, J.: The rise of crowdsourcing. Wired 14(6) (2006),
  6. 6.
    Howe, J.: Crowdsourcing. Crown Publishing Group, New York (2008)Google Scholar
  7. 7.
    Leimeister, J.M., Huber, M., Bretschneider, U., Krcmar, H.: Leveraging crowdsourcing: activation-supporting components for IT-based ideas competition. Journal of Management Information Systems 26(1), 197–224 (2009)CrossRefGoogle Scholar
  8. 8.
    Giles, J.: Internet encyclopedias go head to head. Nature 438, 900–901 (2005), CrossRefGoogle Scholar
  9. 9.
    Fichman, P.: A comparative assessment of answer quality on four question answering sites. Journal of Information Science 37(5), 476–486 (2011)CrossRefGoogle Scholar
  10. 10.
    Keen, E.: The Cult of the Amateur: How Today’s Internet is Killing Our Culture. Doubleday/Currency, New York (2008)Google Scholar
  11. 11.
    Weinberger, D.: Everything is Miscellaneous: The Power of the New Digital Disorder. Henry Holt & Co., New York (2007)Google Scholar
  12. 12.
    Surowiecki, J.: The Wisdom of Crowds. Anchor Books, New York (2004)Google Scholar
  13. 13.
    Raymond, E.: The cathedral and the bazaar. Knowledge, Technology & Policy 12(3), 23–49 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Brooks Jr., F.P.: The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley Publishing Company, Reading (1975)Google Scholar
  15. 15.
    Noguchi, Y.: Web searches go low-tech: you ask, a person answers. Washington Post, p. A01 (2006),
  16. 16.
    Yahoo Answers hits 200 million visitors worldwide! Yahoo Answers Blog. Yahoo (2009),
  17. 17.
    Harper, F.M., Raban, D., Rafaeli, S., Konstan, J.: Predictors of answer quality in online Q&A sites. In: Proceedings of the Conference on Human Factors in Computing Systems, pp. 865–874. ACM, New York (2008)Google Scholar
  18. 18.
    Shachaf, P.: Social reference: a unifying theory. Library & Information Science Research 32(1), 66–76 (2010)CrossRefGoogle Scholar
  19. 19.
    Agichtein, E., Castillo, C., Donato, D., Gionides, A., Mishne, G.: Finding high-quality content in social media. In: Proceedings of the International Conference on Web Search and Web Data Mining, pp. 183–194. ACM, Palo Alto (2008)CrossRefGoogle Scholar
  20. 20.
    Gazan, R.: Microcollaborations in a social Q&A community. Information Processing & Management 46(6), 693–702 (2010)CrossRefGoogle Scholar
  21. 21.
    Harper, F.M., Weinberg, J., Logie, J., Konstan, J.: Question types in social Q&A sites. First Monday 15(7) (2010),
  22. 22.
    Kim, S., Oh, S.: Users’ relevance criteria for evaluating answers in social Q&A site. Journal of the American Society for Information Science and Technology 60(4), 716–727 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kim, S.: Questioners’ credibility judgments of answers in a social question and answer site. Information Research 15(2), paper 432 (2010), Google Scholar
  24. 24.
    Rosenbaum, H., Shachaf, P.: A structuration approach to online communities of practice: the case of Q&A communities. Journal of the American Society for Information Science and Technology 61(9), 1933–1944 (2010)CrossRefGoogle Scholar
  25. 25.
    Shachaf, P.: The paradox of expertise: is the Wikipedia Reference Desk as good as your library? Journal of Documentation 65(6), 977–996 (2009)CrossRefGoogle Scholar
  26. 26.
    Gazan, R.: Specialists and synthesists in a question answering community. In: Proceedings of the American Society for Information Science & Technology Annual Meeting, ASIST, Austin, pp. 1–10 (2006)Google Scholar
  27. 27.
    Gazan, R.: Seekers, sloths and social reference: Homework questions submitted to a question-answering community. New Review of Hypermedia & Multimedia 13(2), 239–248 (2007)CrossRefGoogle Scholar
  28. 28.
    Nam, K.K., Ackerman, M.S., Adamic, L.A.: Questions in, knowledge in?: a study of Naver’s question answering community. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems, pp. 779–788. ACM, Boston (2009)Google Scholar
  29. 29.
    O’Neill, N.: Chacha, Yahoo!, and Amazon. Searcher 15(4), 7–11 (2007)MathSciNetGoogle Scholar
  30. 30.
    Saxton, M.L., Richardson, J.: Understanding Reference Transactions: Transforming an Art into a Science. Academic Press, San Diego (2002)Google Scholar
  31. 31.
    DeLone, W.H., McLean, E.: The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems 19(4), 9–30 (2003)Google Scholar
  32. 32.
    Rieh, S.: Judgment of information quality and cognitive authority in the Web. Journal of the American Society for Information Science and Technology 53(2), 145–161 (2002)CrossRefGoogle Scholar
  33. 33.
    Fallis, D.: On verifying the accuracy of information: Philosophical perspectives. Library Trends 52(3), 463–487 (2004)Google Scholar
  34. 34.
    Frické, M., Fallis, D.: Indicators of accuracy for answers to ready reference questions on the Internet. Journal of the American Society for Information Science and Technology 55(3), 238–245 (2004)CrossRefGoogle Scholar
  35. 35.
    Arazy, O., Nov, O., Patterson, R., Yeo, L.: Information quality in Wikipedia: the effects of group composition and task conflict. Journal of Management Information Systems 27(4), 71–98 (2011)CrossRefGoogle Scholar
  36. 36.
    Stvilia, B., Twidale, M.D., Smith, L.C., Gasser, L.: Information quality work organization in Wikipedia. Journal of the American Society for Information Science and Technology 59(6), 983–1001 (2008)CrossRefGoogle Scholar
  37. 37.
    Blooma, J.M., Chua, A.Y.K., Goh, D.: A predictive framework for retrieving the best answer. In: Proceedings of the 2008 ACM Symposium on Applied Computing. ACM, Fortaleza (2008)Google Scholar
  38. 38.
    Adamic, L.A., Zhang, J., Bakshy, E., Ackerman, M.: Knowledge sharing and Yahoo! Answers: Everyone knows something. In: Proceedings of the International World Wide Web Conference, ACM, Beijing (2008)Google Scholar
  39. 39.
    Poston, R., Speier, C.: Effective use of knowledge management systems: A process model of content ratings and credibility indicators. MIS Quarterly 29(2), 221–244 (2005)Google Scholar
  40. 40.
    Bouguessa, M., Dumoulin, B., Wang, S.: Identifying authoritative actors in question-answering forums: The case of Yahoo! Answers. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 866–874. ACM, Las Vegas (2009)Google Scholar
  41. 41.
    Jurczyk, P., Agichtein, E.: Discovering authorities in question answer communities by using link analysis. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, pp. 919–922. ACM, New York (2007a)CrossRefGoogle Scholar
  42. 42.
    Jurczyk, P., Agichtein, E.: Hits on question answer portals: exploration of link analysis for author ranking. In: Annual ACM Conference on Research and Development in Information Retrieval, pp. 845–846. ACM, Amsterdam (2007b)Google Scholar
  43. 43.
    Chen, W., Zeng, Q., Wenyin, L.: A user reputation model for a user-interactive question answering system. In: Proceedings of the Second International Conference on Semantics, Knowledge, and Grid, pp. 40–45. IEEE Computer Society, Washington D.C (2006)Google Scholar
  44. 44.
    Adamic, L.A., Wei, X., et al.: Individual focus and knowledge contribution. First Monday 5(3) (2010)Google Scholar
  45. 45.
    Dom, B., Paranjpe, D.: A Bayesian technique for estimating the credibility of question answerers. Proceedings of the Society for Industrial and Applied Mathematics (SIAM), pp. 399–409. SIAM, Atlanta (2008), Google Scholar
  46. 46.
    Ong, C., Day, M., Hsu, M.: The measurement of user satisfaction with question answering systems. Information & Management 46(7), 397–403 (2009)CrossRefGoogle Scholar
  47. 47.
    Harper, F.M., Moy, D., Konstan, J.: Facts or friends?: Distinguishing informational and conversational questions in social Q&A sites. In: Conference on Human Factors in Computing Systems, pp. 759–768. ACM, Boston (2009)Google Scholar
  48. 48.
    Li, B., Liu, Y., Ram, A., Garcia, E.V., Agichtein, E.: Exploring question subjectivity prediction in community QA. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 735–736. ACM, Singapore (2009)Google Scholar
  49. 49.
    Liu, Y., Li, S., Cao, Y., et al.: Understanding and summarizing answers in community-based question answering services. In: Proceedings of the 22nd International Conference on Computational Linguistics, pp. 497–504. ACL, Manchester (2008)Google Scholar
  50. 50.
    Hitwise. U.S. visits to question and answer websites increased 118 percent year-over-year. Hitwise, New York (March 19, 2008),
  51. 51.
    Neuendorf, K.: The Content Analysis Guidebook. Sage, Thousand Oaks (2002)Google Scholar
  52. 52.
    Lombard, M., Snyder-Duch, J., Bracken, C.: Content analysis in mass communication: assessment and reporting of intercoder reliability. Human Communication Research 28(4), 587–604 (2002)CrossRefGoogle Scholar
  53. 53.
    Krippendorff, K.: Content Analysis: An Introduction to its Methodology, 2nd edn. Sage, Thousand Oaks (2004)Google Scholar
  54. 54.
    Landis, J.R., Koch, G.: An application of hierarchical Kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33(2), 363–374 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Zhang, X., Feng, Z.: Group size and incentives to contribute: A natural experiment at Chinese Wikipedia. American Economic Review 101(4), 1601–1615 (2011)CrossRefGoogle Scholar
  56. 56.
    Meneely, A., Williams, L.: Secure open source collaboration: an empirical study of Linus’ Law. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 453–462. ACM, New York (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pnina Fichman
    • 1
  1. 1.Indiana UniversityBloomingtonUSA

Personalised recommendations