A System for Web Widget Discovery Using Semantic Distance between User Intent and Social Tags

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7710)


Social interaction leverages collective intelligence through user-generated content, social networking, and social annotation. Users are enabled to enrich knowledge representation by rating, commenting, and tagging. The existing systems for service discovery make use of semantic relation among social tags, but ignore the relation between a user information need for services and tags. This paper first provides an overview of how social tagging is applied to discover contents/services. An enhanced web widget discovery model that aims to discover services mostly relevant to users is then proposed. The model includes an algorithm that quantifies the accurate relation between user intent for a service and the tags of a widget, as well as three different widget discovery schemes. Using the online service of, we experimentally demonstrate the accuracy and efficiency of our system.


content discovery folksonomy service discovery social tagging algorithm widget 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newcomer, E.: Understanding Web Services: XML, WSDL, SOAP, and UDDI. Addison Wesley, Boston (2002)Google Scholar
  2. 2.
    Martin, D., et al.: OWL-S: Semantic Markup for Web Services. W3C member submission,
  3. 3.
    Akkiraju, R., et al.: Web Service Semantics - WSDL-S, W3C Member Submission,
  4. 4.
    Bruijn, J.D., et al.: Web Service Modeling Ontology (WSMO). W3C Member Submission,
  5. 5.
    Bouillet, E., Feblowitz, M., Feng, H., Liu, Z., Ranganathan, A., Riabov, A.: A Folksonomy-Based Model of Web Services for Discovery and Automatic Composition. In: Proc. IEEE International Conference on Services Computing (SCC 2008), pp. 389–396. IEEE Press (July 2008), doi:10.1109/SCC.2008.77Google Scholar
  6. 6.
    Wal, T.V.: Folksonomy. Online Information. London, UK (2005)Google Scholar
  7. 7.
    Zhou, M., Bao, S., Wu, X., Yu, Y.: An Unsupervised Model for Exploring Hierarchical Semantics from Social Annotations. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 680–693. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Chukmol, U., Benharkat, A.-N., Amghar, Y.: “Enhancing Web Service Discovery by using Collaborative Tagging System. In: Proc. 4th International Conference on Next Generation Web Services Practices (NWESP 2008), pp. 54–59. IEEE Press (October 2008), doi:10.1109/NWeSP.2008.29Google Scholar
  9. 9.
    Aurnhammer, M., Hanappe, P., Steels, L.: Augmenting Navigation for Collaborative Tagging with Emergent Semantics. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 58–71. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags over time. ACM Transactions on the Web (TWEB) 1(2) (August 2007)Google Scholar
  11. 11.
    Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Proc. 15th International Conference on World Wide Web (WWW 2006). ACM Press (2006), doi:10.1145/1135777.1135839Google Scholar
  12. 12.
    Li, R., Bao, S., Yu, Y., Fei, B., Su, Z.: Towards effective browsing of large scale social annotations. In: Proc. 16th International Conference on World Wide Web (WWW 2007), ACM Press (2007), doi:10.1145/1242572.1242700Google Scholar
  13. 13.
    Ding, Z., Lei, D., Yan, J., Bin, Z., Lun, A.: A Web Service Discovery Method Based on Tag. In: Proc. International Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2010), pp. 404–408. IEEE Press (February 2010), doi:10.1109/CISIS.2010.18Google Scholar
  14. 14.
    Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A., Riabov, A.: A Faceted Requirements-Driven Approach to Service Design and Composition. In: Proc. IEEE International Conference on Web Services (ICWS 2008), pp. 369–376. IEEE Press (September 2008), doi:10.1109/ICWS.2008.117Google Scholar
  15. 15.
    Liu, X., Huang, G., Mei, H.: A User-Oriented Approach to Automated Service Composition. In: Proc. IEEE International Conference on Web Services (ICWS 2008), pp. 773–776. IEEE Press (September 2008), doi:10.1109/ICWS.2008.139Google Scholar
  16. 16.
    Liu, X., Zhao, Q., Huang, G., Mei, H., Teng, T.: Composing Data-Driven Service Mashups with Tag-Based Semantic Annotations. In: Proc. IEEE International Conference on Web Services (ICWS 2011), pp. 243–250. IEEE Press (2011), doi:10.1109/ICWS.2011.31Google Scholar
  17. 17.
    Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A.P., Verma, K.: A Faceted Classification Based Approach to Search and RankWeb APIs. In: Proc. IEEE International Conference on Web Services (ICWS 2008), pp. 177–184. IEEE Press (September 2008), doi:10.1109/ICWS.2008.105Google Scholar
  18. 18.
    Arabshian, K.: A Framework for Personalized Context-Aware Search of Ontology-Based Tagged Data. In: Proc. IEEE International Conference on Services Computing (SCC 2010), pp. 649–650. IEEE Press (July 2010), doi:10.1109/SCC.2010.73Google Scholar
  19. 19.
    Miller, G.A.: WordNet: a lexical database for English. Communications of the ACM 38(1) (November 1995)Google Scholar
  20. 20.
    Case, D.O.: Looking for information: A survey of research on information seeking, needs, and behavior, 350 p. Academic Press, Amsterdam (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut Mines-Télécom, Télécom SudParisEvryFrance
  2. 2.Charles Sturt UniversityAlburyAustralia

Personalised recommendations