Skip to main content

A Network Theoretic Analysis of Evolutionary Algorithms

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7677))

Included in the following conference series:

Abstract

Network theoretic analyses have been shown to be extremely useful in multiple fields and applications. We propose this approach to study the dynamic behavior of evolutionary algorithms, the first such analysis to the best of our knowledge. Evolving populations are represented as dynamic networks, and we show that changes in population characteristics can be recognized at the level of the networks representing successive generations, with implications for possible improvements in the evolutionary algorithm, e.g., in deciding when a population is prematurely converging, and when a reinitialization of the population may be beneficial to reduce computational effort. In this paper, we show that network-theoretic analyses of evolutionary algorithms help in: (i) studying community-level behaviors, and (ii) using graph properties and metrics to analyze evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackley, D.H.: An empirical study of bit vector function optimization. Genetic Algorithms and Simulated Annealing 1, 170–204 (1987)

    Google Scholar 

  2. Al-Rifaie, M.M., Mark, J.B.: Stochastic diffusion search review (2010)

    Google Scholar 

  3. Aytug, H., Koehler, G.J.: New stopping criterion for genetic algorithms. European Journal of Operational Research 126(3), 662–674 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, T., He, J., Sun, G., Chen, G., Yao, X.: A new approach for analyzing average time complexity of population-based evolutionary algorithms on unimodal problems. IEEE Trans. on Systems, Man, and Cybernetics: Part B 39(5), 1092–1106 (2009)

    Article  Google Scholar 

  5. De Jong, K.A.: Analysis of the behavior of a class of genetic adaptive systems (1975)

    Google Scholar 

  6. Easom, E.E.: A Survey of Global Optimization Techniques (1990)

    Google Scholar 

  7. Eiben, A., Raue, P., Ruttkay, Z.: Genetic Algorithms with Multi-parent Recombination. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 78–87. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  8. Gibbs, M.S., Maier, H.R., Dandy, G.C., Nixon, J.B.: Minimum number of generations required for convergence of genetic algorithms. In: IEEE CEC (2006)

    Google Scholar 

  9. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley (1989)

    Google Scholar 

  10. Greenhalgh, D., Marshall, S.: Convergence criteria for genetic algorithms. SIAM Journal on Computing 30, 269–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mahfoud, S.W.: Niching methods for genetic algorithms. Urbana 51(95001) (1995)

    Google Scholar 

  12. Moraglio, A.: Towards a geometric unification of evolutionary algorithms (2007)

    Google Scholar 

  13. Nair, P.B., Keane, A.J.: Passive vibration suppression of flexible space structures via optimal geometric redesign. AIAA Journal 39(7), 1338–1346 (2001)

    Article  Google Scholar 

  14. Pandit, S., Yang, Y., Kawadia, V., Sreenivasan, S., Chawla, N.V.: Detecting communities in time-evolving proximity networks. In: Network Sci. Workshop. IEEE (2011)

    Google Scholar 

  15. Pettey, C.B., Leuze, M.R., Grefenstette, J.J.: A parallel genetic algorithm. In: Proceedings of the Second ICGA (1987)

    Google Scholar 

  16. Rastrigin, L.A.: Extremal control systems. Theoretical Foundations of Engineering Cybernetics Series, vol. 3 (1974)

    Google Scholar 

  17. Safe, M., Carballido, J., Ponzoni, I., Brignole, N.: On stopping criteria for genetic algorithms. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 405–413. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Schwefel, H.P.: Numerical optimization of computer models. John Wiley & Sons, Inc. (1981)

    Google Scholar 

  19. Zhang, J., Chung, H.S.H., Lo, W.L.: Clustering-based adaptive crossover and mutation probabilities for genetic algorithms. IEEE Transactions on Evolutionary Computation 11(3), 326–335 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuber, K., Card, S.W., Mehrotra, K.G., Mohan, C.K. (2012). A Network Theoretic Analysis of Evolutionary Algorithms. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Nanda, P.K. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2012. Lecture Notes in Computer Science, vol 7677. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35380-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35380-2_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35379-6

  • Online ISBN: 978-3-642-35380-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics