V2GPriv: Vehicle-to-Grid Privacy in the Smart Grid

  • Mark Stegelmann
  • Dogan Kesdogan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7672)


The potential privacy implications of the Smart Grid are one of the key challenges to its introduction. Frequent Smart Meter readings can, e.g., reveal sensitive details about a customer’s behaviour and preferences. The Vehicle-to-Grid (V2G) concept explores using electric vehicles as a centrally coordinated grid resource in a Smart Grid. It can similarly lead to privacy issues by revealing a customer’s whereabouts. Though these two privacy issues are closely related, until now, there exists no common architectural approach to protect privacy. In this work, we critically analyse the Smart Grid infrastructure mandated by German law and its shortcomings regarding V2G privacy. Based on this, we propose V2GPriv an architecture that demonstrates how the V2G concept can be integrated with a Smart Grid infrastructure to offer both privacy benefits and avoid costs of a separate V2G infrastructure.


Electric Vehicle Smart Grid Location Privacy Wide Area Network Vehicle Owner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guille, C., Gross, G.: A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy 37(11), 4379–4390 (2009)CrossRefGoogle Scholar
  2. 2.
    Kempton, W., Letendre, S.E.: Electric vehicles as a new power source for electric utilities. Transportation Research Part D: Transport and Environment 2(3), 157–175 (1997)CrossRefGoogle Scholar
  3. 3.
    Lisovich, M.A., Mulligan, D.K., Wicker, S.B.: Inferring personal information from demand-response systems. IEEE Security and Privacy 8, 11–20 (2010)CrossRefGoogle Scholar
  4. 4.
    Stegelmann, M., Kesdogan, D.: Design and Evaluation of a Privacy-Preserving Architecture for Vehicle-to-Grid Interaction. In: Petkova-Nikova, S., Pashalidis, A., Pernul, G. (eds.) EuroPKI 2011. LNCS, vol. 7163, pp. 75–90. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Kreutzmann, H., Vollmer, S., Tekampe, N., Abromeit, A.: Protection Profile for the Gateway of a Smart Metering System (Gateway PP). Federal Office for Information Security Germany, Protection Profile 01.01.01 (final draft) (August 2011)Google Scholar
  6. 6.
    Yang, Z., Yu, S., Lou, W., Liu, C.: P 2: Privacy-preserving communication and precise reward architecture for V2G networks in smart grid. IEEE Transactions on Smart Grid 2(4), 697–706 (2011)CrossRefGoogle Scholar
  7. 7.
    Kempton, W., Tomic, J.: Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. Journal of Power Sources 144(1), 280–294 (2005)CrossRefGoogle Scholar
  8. 8.
    Stegelmann, M., Kesdogan, D.: Location Privacy for Vehicle-to-Grid Interaction through Battery Management. In: ITNG 2012. IEEE Computer Society (2012)Google Scholar
  9. 9.
    Efthymiou, C., Kalogridis, G.: Smart grid privacy via anonymization of smart metering data. In: IEEE SmartGridComm 2010, pp. 238–243. IEEE (October 2010)Google Scholar
  10. 10.
    Jawurek, M., Johns, M., Rieck, K.: Smart metering de-pseudonymization. In: 27th Annual Computer Security Applications Conference (ACSAC). ACM (2011)Google Scholar
  11. 11.
    Stegelmann, M., Kesdogan, D.: GridPriv: A smart metering architecture offering k-anonymity. In: IEEE TrustCom 2012. IEEE Computer Society (2012)Google Scholar
  12. 12.
    Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs of a smart meter. In: 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, pp. 61–66. ACM, New York (2010)CrossRefGoogle Scholar
  13. 13.
    Garcia, F.D., Jacobs, B.: Privacy-Friendly Energy-Metering via Homomorphic Encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    LeMay, M., Gross, G., Gunter, C.A., Garg, S.: Unified architecture for large-scale attested metering. In: Proceedings of the 40th Annual Hawaii International Conference on System Sciences, HICSS 2007. IEEE Computer Society, Washington, DC (2007)Google Scholar
  15. 15.
    Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society, WPES 2011, pp. 49–60. ACM, New York (2011)CrossRefGoogle Scholar
  16. 16.
    Kalogridis, G., Efthymiou, C., Denic, S., Lewis, T., Cepeda, R.: Privacy for smart meters: Towards undetectable appliance load signatures. In: 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 232–237 (October 2010)Google Scholar
  17. 17.
    Korff, D.: Comparative study on different approaches to new privacy challenges, in particular in the light of technological developments - A.4 Germany. European Commision - Directorate-General Justice, Freedom and Security, Country report (May 2010)Google Scholar
  18. 18.
    Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management, v0.34 (August 2010),
  19. 19.
    Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981)CrossRefGoogle Scholar
  20. 20.
    Mao, W.: Modern Cryptography: Theory and Practice, 1st edn. Prentice Hall PTR (August 2003)Google Scholar
  21. 21.
    TR-03109 Anforderungen an die Interoperabilität der Kommunikationseinheit eines intelligenten Messsystems für Stoff- und Energiemengen. Federal Office for Information Security Germany, Technical Guideline 0.20 (October 2011) (in German)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mark Stegelmann
    • 1
  • Dogan Kesdogan
    • 1
    • 2
  1. 1.Centre for Quantifiable Quality of Service in Communication SystemsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Research Group for IT Security, FB5University of SiegenSiegenGermany

Personalised recommendations