Detecting Illicit Drugs on Social Media Using Automated Social Media Intelligence Analysis (ASMIA)

  • Paul A. Watters
  • Nigel Phair
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7672)

Abstract

While social media is a new and exciting technology, it has the potential to be misused by organized crime groups and individuals involved in the illicit drugs trade. In particular, social media provides a means to create new marketing and distribution opportunities to a global marketplace, often exploiting jurisdictional gaps between buyer and seller. The sheer volume of postings presents investigational barriers, but the platform is amenable to the partial automation of open source intelligence. This paper presents a new methodology for automating social media data, and presents two pilot studies into its use for detecting marketing and distribution of illicit drugs targeted at Australians. Key technical challenges are identified, and the policy implications of the ease of access to illicit drugs are discussed.

Keywords

illicit drugs social media open source intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stabek, A., Watters, P.A., Brown, S.: The Case for a Consistent Cyberscam Classification Framework (CCCF). In: Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, Brisbane, pp. 525–530 (2009)Google Scholar
  2. 2.
    Urbas, G., Choo, K.K.R.: Resource materials on technology-enabled crime. Technical and background paper No 28. Australian Institute of Criminology, Canberra, http://www.aic.gov.au/publications/current%20series/tbp/21-40/tbp028.aspx
  3. 3.
    Stabek, A., Watters, P.A., Layton, R.: The Seven Scam Types: Mapping the Terrain of Cybercrime. In: Proceedings of th 2nd Cybercrime and Trustworthy Computing Workshop, Ballarat, pp. 41–51 (2010)Google Scholar
  4. 4.
    Tanner, A., Warner, G., Stern, H., Olechowsi, S.: Koobface: The evolution of the social botnet. In: Proceedings of the eCrime Researchers Summit (eCrime), pp. 1–10 (2010)Google Scholar
  5. 5.
    Ormsby, E.: The drug’s in the mail, The Age (2012), http://www.theage.com.au/victoria/the-drugs-in-the-mail-20120426-1xnth.html (retrieved)
  6. 6.
    Watters, P.A., McCombie, S., Layton, R., Pieprzyk, J.: Characterising and Predicting Cyber Attacks Using the Cyber Attacker Model Profile (CAMP). Journal of Money Laundering Control 15(4) (2012)Google Scholar
  7. 7.
    Miron, J.: Violencem, guns, and drugs: A cross-country analysis. Journal of Law and Economics 44(S2), 615–633 (2001)CrossRefGoogle Scholar
  8. 8.
    Bradbury, D.: Data mining with Linkedin. Computer Fraud & Security 10, 5–8 (2011)Google Scholar
  9. 9.
    Blake, A.: Case. Cambridge University Press (2001)Google Scholar
  10. 10.
    Etzioni, Cafarella, M., Downey, D., Popescu, A., Shaked, T., Soderland, S., Weld, D., Yates, A.: Unsupervised named-entity extraction from the Web: An experimental study. Artificial Intelligence 165(1), 91–134 (2005)CrossRefGoogle Scholar
  11. 11.
    Duan, Y., Edwards, J.S., Xu, M.X.: Web-based expert systems: benefits and challenges. Information & Management 42(6), 799–811 (2005)CrossRefGoogle Scholar
  12. 12.
    DEEWR, Redi: A drug information resource for Australian school communities (2011), http://www.deewr.gov.au/schooling/programs/redi/Pages/default.aspx (retrieved)
  13. 13.
    Watters, P.A.: Discriminating English word senses using cluster analysis. Journal of Quantitative Linguistics 9(1), 77–86 (2002)CrossRefGoogle Scholar
  14. 14.
    Ho, S., Watters, P.A.: Structural and statistical approaches to filtering Internet pornography. In: Proceedings of the IEEE Conference on Systems, Man & Cybernetics, The Hague, Netherlands (2004)Google Scholar
  15. 15.
    Prichard, J., Foon, Y., Lai, Y., Kirkbride, P., Bruno, R., Ort, C., Carter, S., Hall, W., Gartner, C., Phone, K., Mueller, J.: Measuring drug use patterns in Queensland through wastewater analysis. Trends and Issues in Crime and Criminal Justice (422), 1–8 (2012)Google Scholar
  16. 16.
    Schloenhardt, A.: The market for amphetamine-type stimulants and their precursors in Oceania. Research in Public Policy Series, vol. 81. Australian Institute of Criminology, Canberra (2007)Google Scholar
  17. 17.
    Facebook. Facebook Advertising Guidelines, https://www.facebook.com/ad_guidelines.php (retrieved)
  18. 18.
    Watters, P.A., Patel, M.: Semantic processing performance of Internet machine translation systems. Internet Research 9(2), 153–160 (2009)CrossRefGoogle Scholar
  19. 19.
    Tran, H., Watters, P.A., Hitchens, M., Varadharajan, V.: Trust and authorization in the grid: a recommendation model. In: Proceedings of International Conference on Pervasive Services, pp. 433–436 (2005)Google Scholar
  20. 20.
    Watters, P.A., Martin, F., Schreter, Z.: Quadratic dose-response relationship between caffeine (1, 3, 7-trimethylxanthine) and EEG correlation dimension. Psychopharmacology 136, 264–271 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paul A. Watters
    • 1
  • Nigel Phair
    • 2
  1. 1.Internet Commerce Security Laboratory (ICSL)University of BallaratBallaratAustralia
  2. 2.Centre for Internet SafetyUniversity of CanberraCanberraAustralia

Personalised recommendations