Near-Optimal Collusion-Secure Fingerprinting Codes for Efficiently Tracing Illegal Re-distribution

  • Xin-Wen Wu
  • Alan Wee-Chung Liew
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7672)


Digital fingerprinting provides a means of tracing unauthorized re-distribution of digital objects. With an unique fingerprint being imperceptibly embedded in each authorized copy of the object, in case a pirate copy is found, by analysing the fingerprint in the observed pirate copy, the distributer can identify the users who produced the pirate copy. Collusion-secure fingerprinting schemes address the problem of collusion, where a group of users (a coalition) detect and change the fingerprint symbols in their copies before producing pirate copies. It has been proved that there exist collusion-secure fingerprinting schemes that can identify at least one member of the coalition for any reasonably sized coalition. In order to guarantee the quality of the object, short fingerprinting codes are preferred in practical applications. A lower bound on the code length has been derived by Peikert et al, that is, any collusion-secure fingerprinting codes must have length at least o(s 2log(1/)), where s is the size of coalition. Codes which achieve the lower bound are called optimal codes. However, currently known optimal codes do not have any efficient (polynomial time-complexity) tracing procedure to identify the coalition. The best known codes with efficient tracing algorithms, which were constructed by Cortrina-Navau and Fern\(\acute{a}\)ndez in 2010, have length O(s 6log(s/ε)log(N)), where N is the total number of authorized users. In this paper, we construct a class of codes which have an efficient tracing algorithm and have length O(s 2log(1/ε)log(N)). Our codes are much shorter than those by Cortrina-Navau and Fern\(\acute{a}\)ndez.


Pirate collusion-secure fingerprinting tracing traitor Tardos code concatenated construction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barg, A., Blakley, G., Kabatiansky, G.: Digital fingerprinting codes: problem statements, constructions, identification of traitors. IEEE Trans. Inform. Theory 49(4), 852–865 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boneh, D., Shaw, J.: Collusion secure fingerprinting for digital data. IEEE Trans. Inform. Theory 44(5), 1897–1905 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Trans. Inform. Theory 46(3), 893–910 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cortrina-Navau, J., Fernández, M.: A family of asymptotically good binary fingerprinting codes. IEEE Trans. Inform. Theory 56(10), 5335–5343 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fernández, M., Soriano, M.: Algorithm to decode ‘identifiable parent property’ codes. Electronics Letters 38(12), 552–553 (2002)CrossRefGoogle Scholar
  7. 7.
    Fernandez, M., Soriano, M., Cotrina, J.: Tracing illegal redistribution using error-and-erasures and side information decoding algorithms. IET Inf. Secur. 2(1), 83–90 (2007)CrossRefGoogle Scholar
  8. 8.
    Fiat, A., Tassa, T.: Dynamic traitor tracing. J. Cryptology 14, 211–223 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Forney, G.D.: Concatenated Codes. MIT Press, Cambridge (1966)Google Scholar
  10. 10.
    Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Trans. Inform. Theory 45(6), 1757–1767 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hollmann, H., van Lint, J.H., Linnartz, J.-P., Linnartz, T.L.: On codes with the identifiable parent property. J. Comb. Theory A 82, 121–133 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Peikert, C., Shelat, A., Smith, A.: Lower Bounds for Collusion-Secure Fingerprinting. In: Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA 2003), pp. 472–479 (2003)Google Scholar
  13. 13.
    Roth, R., Ruckenstein, G.: Efficient decoding of Reed-Solomon codes beyond half the minimum distance. IEEE Trans. Inform. Theory 46(1), 246–257 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Safavi-Naini, R., Wang, Y.: Sequential traitor tracing. IEEE Trans. Inform. Theory 49(5), 1319–1326 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Silverberg, A., Staddon, J., Walker, J.: Applications of list decoding to tracing traitors. IEEE Trans. Inform. Theory 49(5), 1312–1318 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Staddon, J., Stinson, D., Wei, R.: Combinatorial properties of frameproof and traceability code. IEEE Trans. Inform. Theory 47(3), 1042–1049 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Škorić, B., Katzenbeisser, S., Celik, M.U.: Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes. Des. Codes Cryptogr. 46, 137–166 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tsfasman, M.A., Vladut, S.G.: Algebraic-Geometric Codes. Kluwer Academic, Boston (1991)CrossRefzbMATHGoogle Scholar
  19. 19.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: Proceedings of 35th Annual ACM Symposium on Theory of Computing (STOC), San Diego, USA, pp. 116–125 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xin-Wen Wu
    • 1
  • Alan Wee-Chung Liew
    • 1
  1. 1.School of Information and Communication TechnologyGriffith UniversityGold CoastAustralia

Personalised recommendations