Skip to main content

Symplectic and Symmetric Multidimensional ERKN Methods

  • Chapter
  • First Online:
Structure-Preserving Algorithms for Oscillatory Differential Equations
  • 909 Accesses

Abstract

Symplectic and symmetric Runge–Kutta–Nyström-type methods have been shown to have excellent behavior in the long-term integration of Hamiltonian systems. Chapter 4 focuses on the investigation of symplectic and symmetric multi-frequency and multidimensional extended Runge–Kutta–Nyström (SSMERKN) integrators. The symplecticity and symmetry conditions for multidimensional ERKN methods are obtained. When the principal frequency matrix vanishes, they reduce to those for the traditional RKN methods with constant coefficients. Some practical SSMERKN integrators are derived. The stability and phase properties of SSMERKN integrators are analyzed. A technique is developed for transforming a non-autonomous Hamiltonian system into an equivalent autonomous Hamiltonian system in an extended phase space. Symplectic multidimensional ERKN methods applied to the equivalent system are shown to preserve the extended energy very well. Numerical experiments are carried out on three nonlinear wave equations and the Fermi–Pasta–Ulam problem.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-35338-3_10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, V.P.: Geometric Methods in the Theory of Ordinary Differential Equations, 2nd edn. Springer, Heidelberg (1988)

    Book  Google Scholar 

  2. Blanes, S., Budd, C.: Adaptive geometric integrators for Hamiltonian problems with approximate scale invariance. SIAM J. Sci. Comput. 26, 1089–1113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calvo, M.P., Sanz-Serna, J.M.: High-order symplectic Runge–Kutta–Nyström methods. SIAM J. Sci. Comput. 14, 1237–1252 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvo, M.P., Sanz-Serna, J.M.: The development of variable-step symplectic integrators, with application to the two-body problem. SIAM J. Sci. Comput. 14, 936–952 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Symmetric and symplectic exponentially fitted Runge–Kutta methods of high order. Comput. Phys. Commun. 181, 2044–2056 (2010)

    Article  MATH  Google Scholar 

  6. Candy, J., Rozmus, W.: A symplectic integration algorithm for separable Hamiltonian functions. J. Comput. Phys. 92, 230–256 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cash, J.R.: A variable step Runge–Kutta Nyström integrator for reversible systems of second order initial value problems. SIAM J. Sci. Comput. 20, 963–978 (2005)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., You, X., Shi, W., Liu, Z.: Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems. Comput. Phys. Commun. 183, 86–98 (2012)

    Article  MathSciNet  Google Scholar 

  9. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, K.: On difference schemes and symplectic geometry. In: Proceedings of the 5th International Symposium on Differential Geometry & Differential Equations, Beijing, August 1984, pp. 42–58 (1985)

    Google Scholar 

  11. Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems. Zhejiang Science & Technology Press, Hangzhou (2003)

    Google Scholar 

  12. Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  13. Fermi, E., Pasta, J., Ulam, S.: Studies of the Nonlinear Problems, I. Los Alamos Report No. LA-1940 (1955); later published in E. Fermi: Collected Papers (Chicago, 1965), and Lect. Appl. Math. 15, 143 (1974)

    Google Scholar 

  14. Franco, J.M., Palacios, M.: High-order P-stable multistep methods. J. Comput. Appl. Math. 30, 1–10 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Frutos, J., Sanz-Serna, J.M.: An easily implementable fourth-order method for the time integration of wave problems. J. Comput. Phys. 103, 160–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. García, A., Martín, P., González, A.B.: New methods for oscillatory problems based on classical codes. Appl. Numer. Math. 42, 141–157 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. González, A.B., Martín, P., López, D.J.: On the numerical integration of orbital problems with high order Runge–Kutta–Nyström methods. Appl. Numer. Math. 35, 1–10 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, 2nd edn. Springer Series in Computational Mathematics. Springer, Berlin (1993)

    MATH  Google Scholar 

  22. Hairer, E., Söderlind, G.: Explicit, time reversible, adaptive step size control. SIAM J. Sci. Comput. 26, 1838–1851 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hong, J., Jiang, S., Li, C.: Explicit multi-symplectic methods for Klein–Gordon–Schrödinger equations. J. Comput. Phys. 228, 250–273 (2009)

    Article  MathSciNet  Google Scholar 

  25. Van der Houwen, P.J., Sommeijer, B.P.: Explicit Runge–Kutta (–Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal. 24, 595–617 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics, vol. 14. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  27. Martin, P., Ferrändiz, J.M.: Multistep numerical methods based on the Scheifele G-functions with applications to satellite dynamics. SIAM J. Numer. Anal. 34, 359–375 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Okunbor, D., Skeel, R.D.: An explicit Runge–Kutta–Nyström method is canonical if and only if its adjoint is explicit. SIAM J. Numer. Anal. 29, 521–527 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qin, M.: Symplectic schemes for nonautonomous Hamiltonian system. Acta Math. Appl. Sin. 12, 184–188 (1996)

    Google Scholar 

  30. Quispel, G.R.W., McLachlan, R.I.: Special issue on geometric numerical integration of differential equations. J. Phys. A, Math. Gen. 39, 5251–5652 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rowlands, G.: A numerical algorithm for Hamiltonian systems. J. Comput. Phys. 97, 235–239 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669–2671 (1983)

    Article  Google Scholar 

  33. Sanz-Serna, J.M.: Runge–Kutta schemes for Hamiltonian systems. BIT 28, 877–883 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problem. Applied Mathematics and Mathematical Computation, vol. 7. Chapman & Hall, London (1994)

    Google Scholar 

  35. Shang, Z.: KAM theorem of symplectic algorithms for Hamiltonian systems. Numer. Math. 83, 477–496 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Simos, T.E.: Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22, 1616–1621 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stiefel, E., Bettis, D.G.: Stabilization of Cowell’ s method. Numer. Math. 13, 154–175 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sun, G.: Symplectic partitioned Runge–Kutta methods. J. Comput. Math. 11, 365–372 (1993)

    MathSciNet  MATH  Google Scholar 

  39. Suris, Y.B.: On the canonicity of mappings that can be generated by methods of Runge–Kutta type for integrating systems \(\ddot{x}=-{\partial {U}}/{\partial{x}}\). Zh. Vychisl. Mat. Mat. Fiz. 29, 202–211 (1989) [in Russian]; U.S.S.R. Comput. Math. Math. Phys. 29, 138–144 (1990) [translation]

    MathSciNet  MATH  Google Scholar 

  40. Tan, X.: Almost symplectic Runge–Kutta schemes for Hamiltonian systems. J. Comput. Phys. 203, 250–273 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tocino, A., Vigo-Aguiar, J.: Symplectic conditions for exponential fitting Runge–Kutta–Nyström methods. Math. Comput. Model. 42, 873–876 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vigo-Aguiar, J., Simos, T.E., Tocino, A.: An adapted symplectic integrator for Hamiltonian problems. J. Mod. Phys. C 2, 225–234 (2011)

    Article  Google Scholar 

  43. de Vogelaere, R.: Methods of integration which preserve the contact transformation property of the Hamiltonian equations. Report No. 4, Dept. Math., Univ. of Notre Dame, Ind. (1956)

    Google Scholar 

  44. Van de Vyver, H.: A symplectic exponentially fitted modified Runge–Kutta–Nyström methods for the numerical integration of orbital problems. New Astron. 10, 261–269 (2005)

    Article  Google Scholar 

  45. Wang, B., Wu, X., Xia, J.: Symplectic and symmetric multi-frequency and multidimensional extended Runge–Kutta–Nyström integrators and its composition methods for second-order oscillatory systems. Submitted

    Google Scholar 

  46. Wang, B., Wu, X., Zhao, H.: Novel improved multidimensional Strömer–Verlet formulas with applications to four aspects in scientific computation. Math. Comput. Model. 57, 857–872 (2013)

    Article  Google Scholar 

  47. Wu, X., Wang, B.: Multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems. Comput. Phys. Commun. 181, 1955–1962 (2010)

    Article  MATH  Google Scholar 

  48. Wu, X., Wang, B., Liu, K., Zhao, H.: ERKN methods for long-term integration of multidimensional orbital problems. Appl. Math. Model. 37, 2327–2336 (2013)

    Article  Google Scholar 

  49. Wu, X., Wang, B., Shi, W.: Effective integrators for nonlinear second-order oscillatory systems with a time-dependent frequency matrix. Appl. Math. Model. (2013). doi:10.1016/j.apm.2013.01.029

    Google Scholar 

  50. Wu, X., Wang, B., Xia, J.: Explicit symplectic multidimensional exponential fitting modified Runge–Kutta–Nyström methods. BIT Numer. Math. 52, 773–795 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu, X., Wang, B., Xia, J.: Extended symplectic Runge–Kutta–Nyström integrators for separable Hamiltonian systems. In: Vigo Aguiar, J. (ed.) Proceedings of the 2010 International Conference on Computational and Mathematical Methods in Science and Engineering, vol. III, Spain, pp. 1016–1020 (2010)

    Google Scholar 

  52. Xiao, A., Tang, Y.: Symplectic properties of multistep Runge–Kutta methods. Comput. Math. Appl. 44, 1329–1338 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, X., You, X., Wang, B. (2013). Symplectic and Symmetric Multidimensional ERKN Methods. In: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35338-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35338-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35337-6

  • Online ISBN: 978-3-642-35338-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics