Advertisement

Cryogenic Properties of Polymer Materials

  • Shao-Yun FuEmail author
Chapter

Abstract

The cryogenic properties of polymer materials have received great attention with new developments in space, superconducting, electronic and defense technologies as well as large cryogenic engineering projects such as International Thermonuclear Experimental Reactor (ITER), etc. Polymer materials developed for these applications are mainly employed as electrical insulators, thermal insulators, vacuum sealants, and matrix materials for composites used in cryogenic environments. The requirements are extremely severe and complicated for polymer materials in these unique applications. The polymer materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. Herein the cryogenic mechanical and physical properties of polymer materials will be highlighted in this chapter. Cryogenic tensile properties/behaviors are first presented in some details for various neat polymers and filled polymers. Cryogenic shear strength, impact strength, and fracture toughness are then discussed. Afterwards, cryogenic thermal, creep, sliding, and dielectric properties of polymers are briefly summarized. Finally, discussions about effects of water absorption and cryogenic aging on cryogenic properties of some polymers are conducted.

Keywords

Polymers Nanocomposites Cryogenic mechanical properties Cryogenic physical properties Low temperatures Cryogenic engineering 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 10672161, 50573090, 10972216, 51073169, and 11002142), the National Basic Research Program of China (No. 2010CB934500), Key Research Program of Beijing City Science and Technology Committee (No H020420020230), and the Overseas Outstanding Scholar Foundation of the Chinese Academy of Sciences (Nos. 2005-1-3 and 2005-2-1).

References

  1. 1.
    Nobelen M, Hayes BS, Seferis JC (2003) Cryogenic microcracking of rubber toughened composites. Polym Compos 24(6):723–730. doi: 10.1002/pc.10066 CrossRefGoogle Scholar
  2. 2.
    Ueki T, Nishijima S, Izumi Y (2005) Designing of epoxy resin systems for cryogenic use. Cryogenics 45(2):141–148. doi: 10.1016/j.cryogenics.2004.07.002 CrossRefGoogle Scholar
  3. 3.
    Yano O, Yamaoka H (1995) Cryogenic properties of polymers. Prog Polym Sci 20(4):585–613. doi: 10.1016/0079-6700(95)00003-X CrossRefGoogle Scholar
  4. 4.
    Nishino T, Okamoto T, Sakurai H (2011) Cryogenic mechanical behavior of poly(trimethylene terephthalate). Macromolecules 44(7):2106–2111. doi: 10.1021/ma200111v CrossRefGoogle Scholar
  5. 5.
    Zhang YH, Wu JT, Fu SY, Yang SY, Li Y, Fan L, Li RKY, Li LF, Yan Q (2004) Studies on characterization and cryogenic mechanical properties of polyimide-layered silicate nanocomposite films. Polymer 45(22):7579–7587. doi: 10.1016/j.polymer.2004.08.032 CrossRefGoogle Scholar
  6. 6.
    Chen ZK, Yang JP, Ni QQ, Fu SY, Huang YG (2009) Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer 50(19):4753–4759. doi: 10.1016/j.polymer.2009.08.001 CrossRefGoogle Scholar
  7. 7.
    Basara G, Yilmazer U, Bayram G (2005) Synthesis and characterization of epoxy based nanocomposites. J Appl Polym Sci 98(3):1081–1086. doi:10.1002/app. 22242 CrossRefGoogle Scholar
  8. 8.
    Rosso P, Friedrich K, Wollny A (2002) Evaluation of the adhesion quality between differently treated carbon fibers and an in-situ polymerized polyamide 12 system. J Macromol Sci B41(4–6):745–759. doi: 10.1081/MB-120013062 Google Scholar
  9. 9.
    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B Eng 39(6):933–961. doi: 10.1016/j.compositesb.2008.01.002 CrossRefGoogle Scholar
  10. 10.
    Fu SY, Lauke B (1998) An analytical characterization of the anisotropy of the elastic modulus of misaligned short-fiber-reinforced polymers. Compos Sci Technol 58(12):1961–1972. doi: 10.1016/S0266-3538(98)00033-5 CrossRefGoogle Scholar
  11. 11.
    Fu SY, Lauke B (1998) The elastic modulus of misaligned short-fiber-reinforced polymers. Compos Sci Technol 58(3–4):389–400. doi: 10.1016/S0266-3538(97)00129-2 CrossRefGoogle Scholar
  12. 12.
    Chen ZK, Yang G, Yang JP, Fu SY, Ye L, Huang YG (2009) Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether. Polymer 50(5):1316–1323. doi: 10.1016/j.polymer.2008.12.048 CrossRefGoogle Scholar
  13. 13.
    Yang JP, Yang G, Xu GS, Fu SY (2007) Cryogenic mechanical behaviors of MMT/epoxy nanocomposites. Compos Sci Technol 67(14):2934–2940. doi: 10.1016/j.compscitech.2007.05.012 CrossRefGoogle Scholar
  14. 14.
    Deng YM, Gu AJ, Fang ZP (2004) The effect of morphology on the optical properties of transparent epoxy/montmorillonite composites. Polym Int 53(1):85–91. doi: 10.1002/pi.1410 CrossRefGoogle Scholar
  15. 15.
    Shindo Y, Kuronuma Y, Takeda T, Narita F, Fu SY (2012) Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading. Compos Part B Eng 43(1):39–43. doi: 10.1016/j.compositesb.2011.04.028 CrossRefGoogle Scholar
  16. 16.
    Takeda T, Shindo Y, Narita F, Mito Y (2009) Tensile characterization of carbon nanotube-reinforced polymer composites at cryogenic temperatures: experiments and multiscale simulations. Mater Trans 50(3):436–445. doi: 10.2320/matertrans.MBW200817 CrossRefGoogle Scholar
  17. 17.
    Thostenson ET, Chou TW (2006) Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing. Adv Mater 18(21):2837–2841. doi: 10.1002/adma.200600977 CrossRefGoogle Scholar
  18. 18.
    Chen Q, Gao BJ, Chen JL (2003) Properties of impregnation resin added to multifunctional epoxy at cryogenic temperature. J Appl Polym Sci 89(5):1385–1389. doi:10.1002/app. 12431 CrossRefGoogle Scholar
  19. 19.
    Hu XL, Huang PC (2005) Influence of polyether chain and synergetic effect of mixed resins with different functionality on adhesion properties of epoxy adhesives. Int J Adhes Adhes 25(4):96–300. doi: 10.1016/j.ijadhddh.2004.08.001 CrossRefGoogle Scholar
  20. 20.
    Pavlick MM, Johnson WS, Jensen B, Weiser E (2009) Evaluation of mechanical properties of advanced polymers for composite cryotank applications. Compos Part A Appl Sci 40(4):359–367. doi: 10.1016/j.compositesa.2008.12.009 CrossRefGoogle Scholar
  21. 21.
    Yang G, Zheng B, Yang JP, Xu GS, Fu SY (2008) Preparation and cryogenic mechanical properties of epoxy resins modified by poly(ethersulfone). J Polym Sci A Polym Chem 46(2):612–624. doi: 10.1002/pola.22409d CrossRefGoogle Scholar
  22. 22.
    McGarry FJ (1970) Building design with fibre reinforced materials. Proc R Soc Lond Ser A 319(1536):59. doi: 10.1098/rspa.1970.0165 CrossRefGoogle Scholar
  23. 23.
    Kinloch AJ, Young RJ (1989) Fracture behaviour of polymers. Applied Science, New YorkGoogle Scholar
  24. 24.
    Yang JP, Chen ZK, Yang G, Fu SY, Ye L (2008) Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer. Polymer 49(13–14):3168–3175. doi: 10.1016/j.polymer.2008.05.008 CrossRefGoogle Scholar
  25. 25.
    Yang JP, Chen ZK, Feng QP, Deng YH, Liu Y, Ni QQ, Fu SY (2012) Cryogenic mechanical behaviors of carbon nanotube reinforced composites based on modified epoxy by poly(ethersulfone). Compos Part B Eng 43(1):22–26. doi: 10.1016/j.compositesb.2011.04.037 CrossRefGoogle Scholar
  26. 26.
    Morgan GJ, Smith D (1974) Thermal conduction in glasses and polymers at low temperatures. J Phys C 7(4):649–664. doi: 10.1088/0022-3719/7/4/004 CrossRefGoogle Scholar
  27. 27.
    Gush HP (1991) A compact low thermal-conductivity support for cryogenic use. Rev Sci Instrum 62(4):1106. doi: 10.1063/1.1142017 CrossRefGoogle Scholar
  28. 28.
    Greig D (1988) Low temperature thermal-conductivity of polymers. Cryogenics 28(4):243–247. doi: 10.1016/0011-2275(88)90008-2 CrossRefGoogle Scholar
  29. 29.
    Nittke A, Scherl M, Esquinazi P, Lorenz W, Li JY, Pobell F (1995) Low-temperature heat release, sound-velocity and attenuation, specific-heat and thermal conductivity in polymers. J Low Temp Phys 98(5–6):517–547. doi: 10.1007/BF00752280 CrossRefGoogle Scholar
  30. 30.
    Choy CL (1977) Thermal-conductivity of polymers. Polymer 8(10):984–1004. doi: 10.1016/0032-3861(77)90002-7 CrossRefGoogle Scholar
  31. 31.
    Usami S, Ejima H, Suzuki T, Asano K (1999) Cryogenic small-flaw strength and creep deformation of epoxy resins. Cryogenics 39(9):729–738. doi: 10.1016/S0011-2275(99)00084-3 CrossRefGoogle Scholar
  32. 32.
    Huang CJ, Fu SY, Zhang YH, Lauke B, Li LF, Ye L (2005) Cryogenic properties of SiO2/epoxy nanocomposites. Cryogenics 45(6):450–454. doi: 10.1016/j.cryogenics.2005.03.003 CrossRefGoogle Scholar
  33. 33.
    Chen XG, Guo JD, Zheng B, Li YQ, Fu SY, He GH (2007) Investigation of thermal expansion of PI/SiO2 composite films by CCD imaging technique from -120 to 200 °C. Compos Sci Technol 67(14):3006–3013. doi: 10.1016/j.compscitech.2007.05.029 CrossRefGoogle Scholar
  34. 34.
    Li Y, Fu SY, Li YQ, Pan QY, Xu GS, Yu CY (2007) Improvements in transmittance, mechanical properties and thermal stability of silica-polyimide composite films by a novel sol-gel route. Compos Sci Technol 67(11–12):2408–2416. doi: 10.1016/j.compscitech.2007.01.003 CrossRefGoogle Scholar
  35. 35.
    Zhang YH, Li Y, Fu SY, Xin JH, Daoud WA, Li LF (2005) Synthesis and cryogenic properties of polyimide–silica hybrid films by sol–gel process. Polymer 46(19):8373–8380. doi: 10.1016/j.polymer.2005.07.012 CrossRefGoogle Scholar
  36. 36.
    Zhang Z, Klein P, Theiler G, Huebner W (2004) Sliding performance of polymer composites in liquid hydrogen and liquid nitrogen. J Mater Sci 39(9):2989–2995. doi: 10.1023/B:JMSC.0000025824.18291.f0 CrossRefGoogle Scholar
  37. 37.
    Tuncer E, Polizos G, Sauers I, James DR, Ellis AR, Messman JM, Aytug T (2009) Polyamide 66 as a cryogenic dielectric. Cryogenics 49(9):463–468. doi: 10.1016/j.cryogenics.2009.06.008 CrossRefGoogle Scholar
  38. 38.
    Polizos G, Tuncer E, Sauers I, More KL (2010) Properties of a nanodielectric cryogenic resin. Appl Phys Lett 96(15):152903. doi: 10.1063/1.3394011 CrossRefGoogle Scholar
  39. 39.
    Weibull W (1951) A statistical distribution of function of wide applicability. J Appl Mech 18(3):293–297Google Scholar
  40. 40.
    Rowland SM, Hill RM, Dissado LA (1986) Censored Weibull statistics in the dielectric-breakdown of the oxide-films. J Phys C Solid State Phys 19(31):6263–6285. doi: 10.1088/0022-3719/19/31/020 CrossRefGoogle Scholar
  41. 41.
    Baschek G, Hartwig G, Zahradnik F (1999) Effect of water absorption in polymers at low and high temperatures. Polymer 40(12):3433–3441. doi: 10.1016/S0032-3861(98)00560-6 CrossRefGoogle Scholar
  42. 42.
    Patterson RL, Hammoud A, Fialla P (2002) Preliminary evaluation of polyarylate dielectric films for cryogenic applications. J Mater Sci Mater Electron 13(6):363–365. doi: 10.1023/A:1015656700768 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina

Personalised recommendations