Polyurethane and Polyisocyanurate Foams in External Tank Cryogenic Insulation

  • U. Stirna
  • I. BeverteEmail author
  • V. Yakushin
  • U. Cabulis


External tanks of the spacecrafts need not only efficient, but also safe cryogenic insulation materials and the issues of their development are still urgent. At present, polyurethane (PUR) or polyisocyanurate (PIR) foams’ cryogenic insulation is widely applied in the partially reusable launch systems. Factors influencing the cryogenic resistance of external thermal insulation performed of spray-on PUR or PIR foams are characterised based on a wide literature search. They include chemical structure and macromolecules’ architecture of polymeric matrix, physical and mechanical properties of foams, thermal stability and combustibility, cellular structure of foams etc. Experimental data on physical and mechanical properties at room and cryogenic temperatures are presented for IWC developed PUR foams further named as IWC-Cryo. Technological processes of spray-on PUR and PIR foams cryogenic insulation, cryo-pumping and the main defects of external tank insulation are analysed as well as applications of foams’ insulation in space technologies (Space Shuttle, Ariane and Buran).


External tank Cryogenic insulation Polyurethane foams Polyisocyanurate foams Spray-on technology Workability Foams’ properties Thermal stresses and strains Insulation defects Cryo-pumping Space technologies 


  1. 1.
    Anthony FM, Colt JZ, Helenbrook RG (1981) Development and validation of cryogenic foam insulation for LH2 subsonic transports. NASA contractor report CR-3404, February, pp 1–69. Accessed 31 Aug 2012
  2. 2.
    Taylor AH, Jackson LR (1981) Structural concepts for a mach 5 cruise airplane LH fuselage tank. J Aircraft 18:655.…/AIAA%20Journal%20of%20Aircraft. Accessed 31 Aug 2012Google Scholar
  3. 3.
    Banyay GA (2006) Examination of polymeric foams as an on-vehicular HPR hydrogen storage media. MS thesis, 109p. Accessed 31 Aug 2012
  4. 4.
    Abe A, Nakamura M, Sato I, Uetani H, Fujitani T (1998) Studies of the large scale sea transportation of the liquid hydrogen. Int J Hydrogen Energy 23:115–121CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Matienzo LJ, Shah TK, Gibbs AJ, Stanley JR (1985) Thermal protection system for the spaca shuttle external tank: application of instrumental methods of analysis. J Therm Insul 9:30–45Google Scholar
  7. 7.
    Weiser ES, Nemeth MP, Clair TL (2004) Assessment of technologies for the space shuttle external tank thermal protection systems and recommendations for technology improvement. Part 1: materials characterization and analysis. NASA/TM-2004-213238, July, pp 1–19. Accessed 31 Aug 2012
  8. 8.
    Knigth NF, Nemeth MP, Hilburger MW (2004) Assessment of technologies for the space shuttle external tank thermal protection systems and recommendations for technology improvement, part 2, NASA TM-213256, August, pp 1–58. Accessed 31 Aug 2012
  9. 9.
    Gates TS, Johnson TJ, Whitley KS (2005) Assessment of technologies for the space shuttle external tank thermal protection systems and recommendations for technology improvement, part 3, NASA TM-2005-213778, July, pp 1–47. Accessed 31 Aug 2012
  10. 10.
  11. 11.
    Stirna U, Alksnis A, Tukums P, Yakushin V et al (1982) Certificate of USSR 1159309 (A patent). A method for obtaining polyurethaneGoogle Scholar
  12. 12.
    (2003) Columbia Accident Investigation Board (CAIB) Mishap Report, Chapter 3. 1:49–84 Accessed 24 Jan 2013
  13. 13.
    Fischer WPP, Stirna U, Yakushin V, Cabulis U (2010) Cryogenic insulation for LOX and LH2-tank application. In: AIAA-2010-6295, 40th international conference on environmental system, Barcelona, Spain, 11–15 July 2010, CD-Rom:1–18Google Scholar
  14. 14.
    Ionescu M (2005) Chemistry and technology of polyols for polyurethanes, chap 21. Rapra Technology Limited, UK, 535pGoogle Scholar
  15. 15.
    Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14:147–154CrossRefGoogle Scholar
  16. 16.
    Соголова ТИ, Демина МИ (1977) Температурная зависимость механических свойств полимеров различного химического строения в интервале температур от 4,2 до 300 К [The temperature effect on mechanical properties of different type polymers in temperature from 4.2 to 300 K]. Mech Compos Mater 13:387–391 (in Russian)Google Scholar
  17. 17.
    Соголова ТИ, Демина МИ (1975) Механические свойства полимеров при 4,2 К и их зависимость от химического строения и условий физического структурирования [The mechanical properties of polymers at 4,2 K and it dependance from chemical structure]. Mech Compos Mater 11:771–783 (in Russian)Google Scholar
  18. 18.
    Щербакова ТС, Макушкин АП, Чудина ЛИ et al (1987) Хрупкое разрушение полимеров при криогенных температурах [Friable destruction of polymers at cryogenic temperatures]. Plast Mass 1:11–12 (in Russian)Google Scholar
  19. 19.
    Stirna U, Beverte I, Yakushin V, Cabulis U (2011) Mechanical properties of rigid polyurethane 1094 foams at room and cryogenic temperatures. J Cell Plast 47:337–353CrossRefGoogle Scholar
  20. 20.
    Becker R (1978) Beziehungen zwischen der Glastemperatur und der Chemischer Struktur von Polymeren. Faserforschung Textiltechnic 29:361–395Google Scholar
  21. 21.
    Becker R (1977) Quantitative Bezieungen zwischen der Glastemperatur von Polymeren und Energiegrössen. Z Phys Chem 258:953–966Google Scholar
  22. 22.
    Oertel G (1993) Polyurethane handbook. Hanser, MunichGoogle Scholar
  23. 23.
    Perepetchko II (1977) Cвойства полимеров при низких температурах [Properties of polymers at low temperatures]. Khimija, Мoscow, 271p (in Russian)Google Scholar
  24. 24.
    Welte RE (1984) Calculation and measurement of reaction temperature in rigid polyurethane and polyisocyanurate foams. J Cell Plast 20:331–356CrossRefGoogle Scholar
  25. 25.
    Krüger J, Müller M, Yakushin V, Cabulis U, Stirna U (2010) Polyurethane foam for thermal insulation at extremely low temperatures. Patent DE102010007713A1Google Scholar
  26. 26.
    Берлин АА, Шутов ФА (1980) Химия и технология газонаполненных высокополимеров [Chemistry and technology of foamed polymers]. Наука, Мoscow, 508p (in Russian)Google Scholar
  27. 27.
    ISO 8873–1 (2006) Rigid cellular plastics – spray-on polyurethane foams for thermal insulation-part 1 material specificationsGoogle Scholar
  28. 28.
    ISO 8873–2 (2007) Rigid cellular plastics – spray-on polyurethane foams for thermal insulation-part 2 applicationGoogle Scholar
  29. 29.
    ISO 8873–3 (2007) Rigid cellular plastics – spray-on polyurethane foams for thermal insulation-part 3 tests methodsGoogle Scholar
  30. 30.
    ASTM C591 - 12a standard specification for unfaced preformed rigid cellular polyisocyanurate thermal insulationGoogle Scholar
  31. 31.
    Fesmire JE, Coffman BE, Meneghelli BJ, Heckle KW (2012) Spray-on foam insulations for launch vehicle cryogenic tanks. Cryogenics 52:251–261. doi: 10.1016/j.cryogenics.2012.01018 CrossRefGoogle Scholar
  32. 32.
    Demharter A (1988) Polyurethane rigid foams, a proven thermal insulating material for applications between +130°C and −196 °C. Cryogenics 38:113–117CrossRefGoogle Scholar
  33. 33.
    Timmerhaus KD (2007) Insulation progress since the Mid-1950s. Cryogenic engineering, International cryogenic monograph series, part 3. Springer, New York, pp 120–133Google Scholar
  34. 34.
    Lerch BA, Sullivan RM (2006) Thermal expansion of polyurethane foams. In: 43rd Annual technical meeting of the Society of Engineering Science. The Pennsilvania State University, University Park, 14 Aug 2006Google Scholar
  35. 35.
    Tarecpir polyisocianurate foams, Kingspan. Accessed 31 Aug 2012
  36. 36.
    Stokes E (2006) Thermal expansion of three closed cell polymeric foams at cryogenic temperatures. Source of application. NASA Marshall Space Flight Center Accessed 31 Aug 2012Google Scholar
  37. 37.
    Reed RP, Arvidson JM, Durcholz RL (1973) Tensile properties of polyurethane and polystyrene foams from 76 to 300K. In: Advances in cryogenic engineering 18, Proceedings of cryogenic engineering conference. Colorado University, Boulder, 9–11 Aug 1972. Plenum Press, New York, pp 184–193Google Scholar
  38. 38.
    Sparks IL, Arvidson JM (1985) Thermal and mechanical properties of polyurethane foams at cryogenic temperatures. J Therm Insul 8:198–232Google Scholar
  39. 39.
    Nadeau H, Kolakowski G, Ulrich H (1981) Polyisocyanurate foams for cryogenic, petrochemical and solar energy applications. J Therm Insul 5:93–112Google Scholar
  40. 40.
    Yakushin VA, Zmudj NP, Stirna UK (2002) Physico-mechanical characteristics of spray-on rigid polyurethane foams at normal and low temperatures. Mech Compos Mater 38:273–280CrossRefGoogle Scholar
  41. 41.
    Thimm T (1983) Derzeitige Erkentnisse über thermischen und thermooxidativen Beanspruchung von Polyurethan elastomeren. Kautschuk Gummi und Kunststoffe, 1983, Bd.36, N4, s.257–268Google Scholar
  42. 42.
    Yakushin VA, Stirna UK, Zhmud NP (1999) Effect of flame retardants on the properties monolithic and foamed polyurethanes at low temperatures. Mech Compos Mater 35:447–450CrossRefGoogle Scholar
  43. 43.
    Stirna UK, Tukums PS, Goba DzN (1986) Пластификация сшитых полиэфируретанов трис(β-хлорэтил)фосфатом (Plastification of polyesterurethanes by trichlorethylphosphate). J Latv Acad Sci (Chem Ser) 1:445–449 (in Russian)Google Scholar
  44. 44.
    Perepechko II, Maksimov AV, Stirna UK (1990) Dynamic viscoelastic properties of plasticized polyesterurethanes. Vysokomol Soedin B 32:607–612 (in Russian)Google Scholar
  45. 45.
    Komada H, Imoto K (1981) ML system cryogenic insulation with rigid urethane s. Int Progr Urethanes 3:99–111Google Scholar
  46. 46.
    Johnson TF, Weiser ES, Grimsley BW, Jensen BJ (2003) Cryopumping in cryogenic insulations for a reusable launch vehicle. In: 48th international SAMPE symposium and exhibition, Long Beach, CA, USA, 11–15 May 2003Google Scholar
  47. 47.
    Semmes EB (2012) Comprehensive Shuttle foams debris reduction strategies. Source of acquisition NASA Marshall Space Flight Center Accessed 31 Aug 2012Google Scholar
  48. 48.
    Hendrickx B, Vis B (2007) Energiya-Buran: the Soviet space shuttle. Springer-Praxis, Chichester, 522 pGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • U. Stirna
    • 1
  • I. Beverte
    • 2
    Email author
  • V. Yakushin
    • 1
  • U. Cabulis
    • 1
  1. 1.Latvian State Institute of Wood ChemistryRigaLatvia
  2. 2.Institute of Polymer Mechanics, University of LatviaRigaLatvia

Personalised recommendations